441 research outputs found

    155-day Periodicity in Solar Cycles 3 and 4

    Full text link
    The near 155 days solar periodicity, so called Rieger periodicity, was first detected in solar flares data and later confirmed with other important solar indices. Unfortunately, a comprehensive analysis on the occurrence of this periodicity during previous centuries can be further complicated due to the poor quality of the sunspot number time-series. We try to detect the Rieger periodicity during the solar cycles 3 and 4 using information on aurorae observed at mid and low latitudes. We use two recently discovered aurora datasets, observed in the last quarter of the 18th century from UK and Spain. Besides simple histograms of time between consecutive events we analyse monthly series of number of aurorae observed using different spectral analysis (MTM and Wavelets). The histograms show the probable presence of Rieger periodicity during cycles 3 and 4. However different spectral analysis applied has only confirmed undoubtedly this hypothesis for solar cycle 3.Comment: 13 pages, 6 figures, to appear in New Astronom

    After the Fall: Late-Time Spectroscopy of Type IIP Supernovae

    Get PDF
    Herein we analyse late-time (post-plateau; 103 < t < 1229 d) optical spectra of low-redshift (z < 0.016), hydrogen-rich Type IIP supernovae (SNe IIP). Our newly constructed sample contains 91 nebular spectra of 38 SNe IIP, which is the largest dataset of its kind ever analysed in one study, and many of the objects have complementary photometric data. We determined the peak and total luminosity, velocity of the peak, HWHM intensity, and profile shape for many emission lines. Temporal evolution of these values and various flux ratios are studied. We also investigate the correlations between these measurements and photometric observables, such as the peak and plateau absolute magnitudes and the late-time light curve decline rates in various optical bands. The strongest and most robust result we find is that the luminosities of all spectral features (except those of helium) tend to be higher in objects with steeper late-time V-band decline rates. A steep late-time V-band slope likely arises from less efficient trapping of gamma-rays and positrons, which could be caused by multidimensional effects such as clumping of the ejecta or asphericity of the explosion itself. Furthermore, if gamma-rays and positrons can escape more easily, then so can photons via the observed emission lines, leading to more luminous spectral features. It is also shown that SNe IIP with larger progenitor stars have ejecta with a more physically extended oxygen layer that is well-mixed with the hydrogen layer. In addition, we find a subset of objects with evidence for asymmetric Ni-56 ejection, likely bipolar in shape. We also compare our observations to theoretical late-time spectral models of SNe IIP from two separate groups and find moderate-to-good agreement with both sets of models. Our SNe IIP spectra are consistent with models of 12-15 M_Sun progenitor stars having relatively low metallicity (Z \le 0.01)

    Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core

    Get PDF
    A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, ‘?-11fe’, was extended to lower velocities to include the regions that emit at nebular epochs. Model ?-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [Fe ii] and [Fe iii] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is ?0.47 ± 0.05?M?. The bulk of 56Ni has an outermost velocity of ?8500 km s?1. The mass of stable iron is ?0.23 ± 0.03?M?. Stable Ni has low abundance, ?10?2?M?. This is sufficient to reproduce an observed emission line near 7400 Å. A sub-Chandrasekhar explosion model with mass 1.02?M? and no central stable Fe does not reproduce the observed line ratios. A mock model where neutron-rich Fe-group species are located above 56Ni following recent suggestions is also shown to yield spectra that are less compatible with the observations. The densities and abundances in the inner layers obtained from the nebular analysis, combined with those of the outer layers previously obtained, are used to compute a synthetic bolometric light curve, which compares favourably with the light curve of SN 2011fe

    Search for anomalous top-gluon couplings at LHC revisited

    Full text link
    Through top-quark pair productions at LHC, we study possible effects of nonstandard top-gluon couplings yielded by SU(3)xSU(2)xU(1) invariant dimension-6 effective operators. We calculate the total cross section and also some distributions for p p -> t tbar X as functions of two anomalous-coupling parameters, i.e., the chromoelectric and chromomagnetic moments of the top, which are constrained by the total cross section sigma(p pbar -> t tbar X) measured at Tevatron. We find that LHC might give us some chances to observe sizable effects induced by those new couplings.Comment: One comment and related two refs. added. Final version (to appear in Eur.Phys.J. C

    Chromomagnetic Dipole Moment of the Top Quark Revisited

    Full text link
    We study the complete one-loop contributions to the chromagnetic dipole moment Δκ\Delta\kappa of the top quark in the Standard Model, two Higgs doublet models, topcolor assited technicolor models (TC2), 331 models and extended models with a single extra dimension. We find that the SM predicts Δκ=0.056\Delta\kappa = - 0.056 and that the predictions of the other models are also consitent with the constraints imposed on Δκ\Delta\kappa by low-energy precision measurements.Comment: 20 pages, 5 figures, Updat

    Somatotypes trajectories during adulthood and their association with COPD phenotypes

    Get PDF
    Rationale: Chronic obstructive pulmonary disease (COPD) comprises distinct phenotypes, all characterised by airflow limitation. Objectives: We hypothesised that somatotype changes - as a surrogate of adiposity - from early adulthood follow different trajectories to reach distinct phenotypes. Methods: Using the validated Stunkard''s Pictogram, 356 COPD patients chose the somatotype that best reflects their current body build and those at ages 18, 30, 40 and 50 years. An unbiased group-based trajectory modelling was used to determine somatotype trajectories. We then compared the current COPD-related clinical and phenotypic characteristics of subjects belonging to each trajectory. Measurements and main results: At 18 years of age, 88% of the participants described having a lean or medium somatotype (estimated body mass index (BMI) between 19 and 23 kg.m(-2)) while the other 12% a heavier somatotype (estimated BMI between 25 and 27 kg.m(-2)). From age 18 onwards, five distinct trajectories were observed. Four of them demonstrating a continuous increase in adiposity throughout adulthood with the exception of one, where the initial increase was followed by loss of adiposity after age 40. Patients with this trajectory were primarily females with low BMI and D-LCO (diffusing capacity of the lung for carbon monoxide). A persistently lean trajectory was seen in 14% of the cohort. This group had significantly lower forced expiratory volume in 1 s (FEV1), D-LCO, more emphysema and a worse BODE (BMI, airflow obstruction, dyspnoea and exercise capacity) score thus resembling the multiple organ loss of tissue (MOLT) phenotype. Conclusions: COPD patients have distinct somatotype trajectories throughout adulthood. Those with the MOLT phenotype maintain a lean trajectory throughout life. Smoking subjects with this lean phenotype in early adulthood deserve particular attention as they seem to develop more severe COPD

    Simulation techniques for cosmological simulations

    Get PDF
    Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 12; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae

    No full text
    The supernova (SN) PTF11iqb was initially classified as a Type IIn event caught very early after explosion. It showed narrow Wolf–Rayet (WR) spectral features on day 2 (as in SN 1998S and SN 2013cu), but the narrow emission weakened quickly and the spectrum morphed to resemble Types II-L and II-P. At late times, H? exhibited a complex, multipeaked profile reminiscent of SN 1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN 1998S, although with somewhat weaker interaction with circumstellar material (CSM) at early times, and stronger interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for CSM interaction (with a mass-loss rate of roughly 10?4 M? yr?1) added to the light curve of a normal SN II-P. The underlying plateau requires a progenitor with an extended hydrogen envelope like a red supergiant at the moment of explosion, consistent with the slow wind speed (&lt;80?km?s?1) inferred from narrow H? emission. The cool supergiant progenitor is significant because PTF11iqb showed WR features in its early spectrum – meaning that the presence of such WR features does not necessarily indicate a WR-like progenitor. Overall, PTF11iqb bridges SNe IIn with weaker pre-SN mass-loss seen in SNe II-L and II-P, implying a continuum between these types

    PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae

    No full text
    The supernova (SN) PTF11iqb was initially classified as a Type IIn event caught very early after explosion. It showed narrow Wolf–Rayet (WR) spectral features on day 2 (as in SN 1998S and SN 2013cu), but the narrow emission weakened quickly and the spectrum morphed to resemble Types II-L and II-P. At late times, H? exhibited a complex, multipeaked profile reminiscent of SN 1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN 1998S, although with somewhat weaker interaction with circumstellar material (CSM) at early times, and stronger interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for CSM interaction (with a mass-loss rate of roughly 10?4 M? yr?1) added to the light curve of a normal SN II-P. The underlying plateau requires a progenitor with an extended hydrogen envelope like a red supergiant at the moment of explosion, consistent with the slow wind speed (&lt;80?km?s?1) inferred from narrow H? emission. The cool supergiant progenitor is significant because PTF11iqb showed WR features in its early spectrum – meaning that the presence of such WR features does not necessarily indicate a WR-like progenitor. Overall, PTF11iqb bridges SNe IIn with weaker pre-SN mass-loss seen in SNe II-L and II-P, implying a continuum between these types
    corecore