118 research outputs found

    Mixed Cation Halide Perovskite under Environmental and Physical Stress

    Get PDF
    Despite the ideal performance demonstrated by mixed perovskite materials when used as active layers in photovoltaic devices, the factor which still hampers their use in real life remains the poor stability of their physico-chemical and functional properties when submitted to prolonged permanence in atmosphere, exposure to light and/or to moderately high temperature. We used high resolution photoelectron spectroscopy to compare the chemical state of triple cation, double halide Cs [Formula: see text] (FA [Formula: see text] MA [Formula: see text]) [Formula: see text] Pb(I [Formula: see text] Br [Formula: see text]) [Formula: see text] perovskite thin films being freshly deposited or kept for one month in the dark or in the light in environmental conditions. Important deviations from the nominal composition were found in the samples aged in the dark, which, however, did not show evident signs of oxidation and basically preserved their own electronic structures. Ageing in the light determined a dramatic material deterioration with heavily perturbed chemical composition also due to reactions of the perovskite components with surface contaminants, promoted by the exposure to visible radiation. We also investigated the implications that 2D MXene flakes, recently identified as effective perovskite additive to improve solar cell efficiency, might have on the labile resilience of the material to external agents. Our results exclude any deleterious MXene influence on the perovskite stability and, actually, might evidence a mild stabilizing effect for the fresh samples, which, if doped, exhibited a lower deviation from the expected stoichiometry with respect to the undoped sample. The evolution of the undoped perovskites under thermal stress was studied by heating the samples in UHV while monitoring in real time, simultaneously, the behaviour of four representative material elements. Moreover, we could reveal the occurrence of fast changes induced in the fresh material by the photon beam as well as the enhanced decomposition triggered by the concurrent X-ray irradiation and thermal heating

    Band dispersion in the deep 1s core level of graphene

    Full text link
    Chemical bonding in molecules and solids arises from the overlap of valence electron wave functions, forming extended molecular orbitals and dispersing Bloch states, respectively. Core electrons with high binding energies, on the other hand, are localized to their respective atoms and their wave functions do not overlap significantly. Here we report the observation of band formation and considerable dispersion (up to 60 meV) in the 1s1s core level of the carbon atoms forming graphene, despite the high C 1s1s binding energy of \approx 284 eV. Due to a Young's double slit-like interference effect, a situation arises in which only the bonding or only the anti-bonding states is observed for a given photoemission geometry.Comment: 12 pages, 3 figures, including supplementary materia

    Characterization of high-quality MgB2(0001) epitaxial films on Mg(0001)

    Full text link
    High-grade MgB2(0001) films were grown on Mg(0001) by means of ultra-high-vacuum molecular beam epitaxy. Low energy electron diffraction and x-ray diffraction data indicate that thick films are formed by epitaxially oriented grains with MgB2 bulk structure. The quality of the films allowed angle-resolved photoemission and polarization dependent x-ray absorption measurements. For the first time, we report the band mapping along the Gamma-A direction and the estimation of the electron-phonon coupling constant l ~ 0.55 for the surface state electrons.Comment: 15 text pages, 6 figures Submitted for publicatio

    Reversible changes in the electronic structure of carbon nanotube-hybrids upon NO2 exposure under ambient conditions

    Get PDF
    Single-walled carbon nanotubes have enormous potential for gas sensing. This study shows that cluster filling is a key to high sensitivity and it opens the possibility for a very high desorption at ambient temperature

    Probing the Atomic Arrangement of Sub-Surface Dopants in a Silicon Quantum Device Platform

    Full text link
    High-density structures of sub-surface phosphorus dopants in silicon continue to garner interest as a silicon-based quantum computer platform, however, a much-needed confirmation of their dopant arrangement has been lacking. In this work, we take advantage of the chemical specificity of X-ray photoelectron diffraction to obtain the precise structural configuration of P dopants in sub-surface Si:P δ\delta-layers. The growth of δ\delta-layer systems with different levels of doping is carefully studied and verified using X-ray photoelectron spectroscopy and low-energy electron diffraction. Subsequent XPD measurements reveal that in all cases, the dopants primarily substitute with Si atoms from the host material. Furthermore, no signs of free carrier-inhibiting P-P dimerization can be observed. Our observations not only settle a nearly decade-long debate about the dopant arrangement but also demonstrate that XPD is well suited to study sub-surface dopant structures. This work thus provides valuable input for an updated understanding of the behavior of Si:P δ\delta-layers and the modeling of their derived quantum devices

    Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubes

    Full text link
    Pristine single-walled carbon nanotubes (SWCNTs) are rather inert to O2_2 and N2_2, which for low doses chemisorb only on defect sites or vacancies of the SWCNTs at the ppm level. However, very low doping has a major effect on the electronic properties and conductivity of the SWCNTs. Already at low O2_2 doses (80 L), the X-ray photoelectron spectroscopy (XPS) O 1s signal becomes saturated, indicating nearly all the SWCNT's vacancies have been oxidized. As a result, probing vacancy oxidation on SWCNTs via XPS yields spectra with rather low signal-to-noise ratios, even for metallicity-sorted SWCNTs. We show that, even under these conditions, the first principles density functional theory calculated Kohn-Sham O 1s binding energies may be used to assign the XPS O 1s spectra for oxidized vacancies on SWCNTs into its individual components. This allows one to determine the specific functional groups or bonding environments measured. We find the XPS O 1s signal is mostly due to three O-containing functional groups on SWCNT vacancies: epoxy (C2_2>>O), carbonyl (C2_2>>C==O), and ketene (C==C==O), as ordered by abundance. Upon oxidation of nearly all the SWCNT's vacancies, the central peak's intensity for the metallic SWCNT sample is 60\% greater than for the semiconducting SWCNT sample. This suggests a greater abundance of O-containing defect structures on the metallic SWCNT sample. For both metallic and semiconducting SWCNTs, we find O2_2 does not contribute to the measured XPS O~1s spectra

    Ethylene Dissociation on Ni3Al(111)

    Get PDF
    Combining density functional theory, Nudged Elastic Band and high-energy resolution x-ray photoelectron spectroscopy experiments, we study the early stages and reaction pathways whereby ethylene molecules decompose on Ni3Al (111) prior to graphene nucleation and growth. After characterizing stable configurations of ethylene on the surface, and of all intermediate products leading to carbon species, we calculate energy barriers for all relevant processes, including dehydrogenation, isomerization, C-C cleavage and their respective inverse reactions. This quantitative analysis helps in identifying the most probable reaction pathways. The combination of temperature dependent C 1s core level photoelectron spectroscopy measurements and of core level shift calculations for all the different species investigated allow us to understand the temperature evolution of the surface species, and to identify the whole reaction mechanism. Combined analysis of this kind is useful for understanding which species are present on the surface at various temperatures during chemical vapor deposition graphene growth experiments

    Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbons formation.

    Get PDF
    Polycyclic aromatic hydrocarbons as well as other organic molecules appear among the most abundant observed species in interstellar space and are key molecules to understanding the prebiotic roots of life. However, their existence and abundance in space remain a puzzle. Here we present a new top-down route to form polycyclic aromatic hydrocarbons in large quantities in space. We show that aromatic species can be efficiently formed on the graphitized surface of the abundant silicon carbide stardust on exposure to atomic hydrogen under pressure and temperature conditions analogous to those of the interstellar medium. To this aim, we mimic the circumstellar environment using ultra-high vacuum chambers and investigate the SiC surface by in situ advanced characterization techniques combined with first-principles molecular dynamics calculations. These results suggest that top-down routes are crucial to astrochemistry to explain the abundance of organic species and to uncover the origin of unidentified infrared emission features from advanced observations. © 2014 Macmillan Publishers Limited. All rights reserved

    Atomic Undercoordination in Ag Islands on Ru(0001) Grown via Size-Selected Cluster Deposition: An Experimental and Theoretical High-Resolution Core-Level Photoemission Study

    Get PDF
    The possibility of depositing precisely mass-selected Ag clusters (Ag-1, Ag-3, and Ag-7) on Ru(0001) was instrumental in determining the importance of the in-plane coordination number (CN) and allowed us to establish a linear dependence of the Ag 3d(5/2) core-level shift on CN. The fast cluster surface diffusion at room temperature, caused by the low interaction between silver and ruthenium, leads to the formation of islands with a low degree of ordering, as evidenced by the high density of low-coordinated atomic configurations, in particular CN = 4 and 5. On the contrary, islands formed upon Ag-7 deposition show a higher density of atoms with CN = 6, thus indicating the formation of islands with a close-packed atomic arrangement. This combined experimental and theoretical approach, when applied to clusters of different elements, offers the perspective to reveal nonequivalent local configurations in two-dimensional (2D) materials grown using different building blocks, with potential implications in understanding electronic and reactivity properties at the atomic level
    corecore