2,673 research outputs found

    Thermodynamic formalism for dissipative quantum walks

    Full text link
    We consider the dynamical properties of dissipative continuous-time quantum walks on directed graphs. Using a large-deviation approach we construct a thermodynamic formalism allowing us to define a dynamical order parameter, and to identify transitions between dynamical regimes. For a particular class of dissipative quantum walks we propose a quantum generalization of the the classical PageRank vector, used to rank the importance of nodes in a directed graph. We also provide an example where one can characterize the dynamical transition from an effective classical random walk to a dissipative quantum walk as a thermodynamic crossover between distinct dynamical regimes.Comment: 8 page

    Statistical properties of random matrix product states

    Full text link
    We study the set of random matrix product states (RMPS) introduced in arXiv:0908.3877 as a tool to explore foundational aspects of quantum statistical mechanics. In the present work, we provide an accurate numerical and analytical investigation of the properties of RMPS. We calculate the average state of the ensemble in the non-homogeneous case, and numerically check the validity of this result. We also suggest using RMPS as a tool to approximate properties of general quantum random states. The numerical simulations presented here support the accuracy and efficiency of this approximation. These results suggest that any generalized canonical state can be approximated with high probability by the reduced density matrix of a random MPS, if the average MPS coincide with the associated microcanonical ensemble.Comment: 12 pages, 17 figures; published versio

    Spin networks, quantum automata and link invariants

    Full text link
    The spin network simulator model represents a bridge between (generalized) circuit schemes for standard quantum computation and approaches based on notions from Topological Quantum Field Theories (TQFT). More precisely, when working with purely discrete unitary gates, the simulator is naturally modelled as families of quantum automata which in turn represent discrete versions of topological quantum computation models. Such a quantum combinatorial scheme, which essentially encodes SU(2) Racah--Wigner algebra and its braided counterpart, is particularly suitable to address problems in topology and group theory and we discuss here a finite states--quantum automaton able to accept the language of braid group in view of applications to the problem of estimating link polynomials in Chern--Simons field theory.Comment: LateX,19 pages; to appear in the Proc. of "Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Italy) September 12-16 200

    LIFE JOURNEY WITH SOMEBODY SPECIAL: THE HIGHS AND LOWS OF PARENTS OF CHILDREN WITH DISABILITY

    Get PDF
    Central to this study is the lived experiences of parents of children with physical disability. This study was conducted at Barangay Poblacion 8, Midsayap, Cotabato. It included as participants purposively chosen parents of children with physical disability. Their ages ranged from 31 to 53 years old, and were all mothers. The physical disabilities of their children were either musculoskeletal (orthopaedic) or visual. This study made use of the phenomenological research design. Findings bared that despite the apparent conditions of their children, the participants joyfully and with gratitude accepted their children as blessings from God. They spent bonding moments with them, and at times appreciative of their learning of new things, and were busy taking good care of the total well-being of their children. They were aware of their children’s limitations, but they do not consider them as different. Nevertheless, they sought acceptance, respect, and understanding from others. The participants were concerned about the health issues of their children, anxious about the mistreatment they received from others, and pondered on their possible rejection in the future. The participants stood by their children and draw strength from God. They look at the bright side of life and hope that their children finish studying. The participants as mothers were longing for help for their children’s sake.  Article visualizations

    Relativistic MHD Simulations of Jets with Toroidal Magnetic Fields

    Full text link
    This paper presents an application of the recent relativistic HLLC approximate Riemann solver by Mignone & Bodo to magnetized flows with vanishing normal component of the magnetic field. The numerical scheme is validated in two dimensions by investigating the propagation of axisymmetric jets with toroidal magnetic fields. The selected jet models show that the HLLC solver yields sharper resolution of contact and shear waves and better convergence properties over the traditional HLL approach.Comment: 12 pages, 5 figure

    Solar Wind at 6.8 Solar Radii from UVCS Observation of Comet C/1996Y1

    Get PDF
    The comet C/1996Y1, a member of the Kreutz family of Sun-grazing comets, was observed with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliospheric Observatory (SOHO) satellite. The Lyα line profile and spatial distribution are interpreted in terms of the theory of bow shocks driven by mass-loading. At the time of the observation, the comet was 6.8 R☉ from the Sun in a region of high-speed wind, a region difficult to observe directly with the SOHO instruments but an important region for testing models of solar wind acceleration and heating. We find a solar wind speed below 640 km s-1 and a constraint on the combination of solar wind speed and proton temperature. The total energy per proton at 6.8 R☉ is 50%-75% of the energy at 1 AU, indicating that significant heating occurs at larger radii. The centroid and width of the Lyα line generally confirm the predictions of models of the cometary bow shock driven by mass-loading as cometary molecules are ionized and swept up in the solar wind. We estimate an outgassing rate of 20 kg s-1, which implies an active area of the nucleus only about 6.7 m in diameter at 6.8 R☉. This is likely to be the size of the nucleus, because any inert mantle would have probably been blown off during the approach to the Sun

    Band dispersion in the deep 1s core level of graphene

    Get PDF
    Chemical bonding in molecules and solids arises from the overlap of valence electron wave functions, forming extended molecular orbitals and dispersing Bloch states, respectively. Core electrons with high binding energies, on the other hand, are localized to their respective atoms and their wave functions do not overlap significantly. Here we report the observation of band formation and considerable dispersion (up to 60 meV) in the 1s1s core level of the carbon atoms forming graphene, despite the high C 1s1s binding energy of ≈\approx 284 eV. Due to a Young's double slit-like interference effect, a situation arises in which only the bonding or only the anti-bonding states is observed for a given photoemission geometry.Comment: 12 pages, 3 figures, including supplementary materia

    Deep Chandra observations of the stripped galaxy group falling into Abell 2142

    Get PDF
    In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra that highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals a leading edge and complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond ~ 300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, for example, caused by turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2D ∝ k⁻ÂČ∙³ which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D ~ 0:1 -0:25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient

    Numerical models of irrotational binary neutron stars in general relativity

    Get PDF
    We report on general relativistic calculations of quasiequilibrium configurations of binary neutron stars in circular orbits with zero vorticity. These configurations are expected to represent realistic situations as opposed to corotating configurations. The Einstein equations are solved under the assumption of a conformally flat spatial 3-metric (Wilson-Mathews approximation). The velocity field inside the stars is computed by solving an elliptical equation for the velocity scalar potential. Results are presented for sequences of constant baryon number (evolutionary sequences). Although the central density decreases much less with the binary separation than in the corotating case, it still decreases. Thus, no tendency is found for the stars to individually collapse to black hole prior to merger.Comment: Minor corrections, improved figure, 5 pages, REVTeX, Phys. Rev. Lett. in pres
    • 

    corecore