245 research outputs found

    Correlative Microscopy Study of FIB Patterned Stainless Steel Surfaces as Novel Nano-Structured Stents for Cardiovascular Applications

    Get PDF
    Coronary artery disease is a major problem worldwide causing 7.2 million deaths worldwide annually, resulting from vascular occlusion, myocardial infarction and its complications. Stent implantation is a percutaneous interventional procedure that mitigates vessel stenosis, providing mechanical support within the artery. However, stenting causes physical damage to the arterial wall. It is well accepted that a valuable route to reduce in-stent re-stenosis can be based on promoting cell response to nano-structured stainless steel (SS) surfaces such as, for example, by patterning nano-pits in SS. In this regard patterning by Focussed Ion-Beam (FIB) milling offers several advantages for flexible prototyping (i) practically any substrate material that is able to withstand high vacuum conditions of the microscope chamber can be used, (ii) there is high flexibility in the obtainable shapes and geometries by modulating the ion beam current and the patterning conditions, (iii) reduced complexity of the pattering process e.g. it is a single-step process with a possibility of real-time monitoring of the milling progression. On the other hand FIB patterning of polycrystalline metals is greatly influenced by channelling effects and re-deposition. Correlative microscopy methods present an opportunity to study such effects comprehensively and derive structure-property understanding that is important for developing improved pattering.In this report we present a FIB patterning protocol for nano-structuring features (concaves) ordered in rectangular arrays on pre-polished 316L Stainless Steel (SS) surfaces. An investigation based on correlative microscopy approach of the size, shape and depth of the developed arrays in relation to the crystal orientation of the underlying SS domains, is presented. The correlative microscopy protocol is based on cross-correlation of top-view Scanning Electron Microscopy (SEM), Electron Backscattered Diffraction (EBSD), and Atomic Force Microscopy (AFM).Various dose tests were performed, aiming at improved productivity by preserving nano-size accuracy of the patterned process. The optimal FIB patterning conditions for achieving reasonably high throughput (patterned rate of about 0.03 mm2 per hour) and nano-size accuracy in dimensions and shapes of the features, are discussed as well

    Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor

    Full text link
    Most holographic models of superconducting systems neglect the effects of dynamical boundary gauge fields during the process of spontaneous symmetry-breaking. Usually a global symmetry gets broken. This yields a superfluid, which then is gauged "weakly" afterwards. In this work we build (and probe the dynamics of) a holographic model in which a local boundary symmetry is spontaneously broken instead. We compute two-point functions of dynamical non-Abelian gauge fields in the normal and in the broken phase, and find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave superconductor in (1+1) dimensions. The ground state of this model also breaks (1+1)-dimensional parity spontaneously, while the Hamiltonian is parity-invariant. We discuss possible implications of our results for a wider class of holographic liquids.Comment: 32 pages, 12 figures; v3: string theory derivation of setup added (section 3.1), improved presentation, version accepted by JHEP; v2: paragraph added to discussion, figure added, references added, typos correcte

    Molecular Etiology of Atherogenesis – In Vitro Induction of Lipidosis in Macrophages with a New LDL Model

    Get PDF
    BACKGROUND: Atherosclerosis starts by lipid accumulation in the arterial intima and progresses into a chronic vascular inflammatory disease. A major atherogenic process is the formation of lipid-loaded macrophages in which a breakdown of the endolysomal pathway results in irreversible accumulation of cargo in the late endocytic compartments with a phenotype similar to several forms of lipidosis. Macrophages exposed to oxidized LDL exihibit this phenomenon in vitro and manifest an impaired degradation of internalized lipids and enhanced inflammatory stimulation. Identification of the specific chemical component(s) causing this phenotype has been elusive because of the chemical complexity of oxidized LDL. METHODOLOGY/PRINCIPAL FINDINGS: Lipid "core aldehydes" are formed in oxidized LDL and exist in atherosclerotic plaques. These aldehydes are slowly oxidized in situ and (much faster) by intracellular aldehyde oxidizing systems to cholesteryl hemiesters. We show that a single cholesteryl hemiester incorporated into native, non-oxidized LDL induces a lipidosis phenotype with subsequent cell death in macrophages. Internalization of the cholesteryl hemiester via the native LDL vehicle induced lipid accumulation in a time- and concentration-dependent manner in "frozen" endolysosomes. Quantitative shotgun lipidomics analysis showed that internalized lipid in cholesteryl hemiester-intoxicated cells remained largely unprocessed in those lipid-rich organelles. CONCLUSIONS/SIGNIFICANCE: The principle elucidated with the present cholesteryl hemiester-containing native-LDL model, extended to other molecular components of oxidized LDL, will help in defining the molecular etiology and etiological hierarchy of atherogenic agents

    Spinning Gland Transcriptomics from Two Main Clades of Spiders (Order: Araneae) - Insights on Their Molecular, Anatomical and Behavioral Evolution

    Get PDF
    Characterized by distinctive evolutionary adaptations, spiders provide a comprehensive system for evolutionary and developmental studies of anatomical organs, including silk and venom production. Here we performed cDNA sequencing using massively parallel sequencers (454 GS-FLX Titanium) to generate ∼80,000 reads from the spinning gland of Actinopus spp. (infraorder: Mygalomorphae) and Gasteracantha cancriformis (infraorder: Araneomorphae, Orbiculariae clade). Actinopus spp. retains primitive characteristics on web usage and presents a single undifferentiated spinning gland while the orbiculariae spiders have seven differentiated spinning glands and complex patterns of web usage. MIRA, Celera Assembler and CAP3 software were used to cluster NGS reads for each spider. CAP3 unigenes passed through a pipeline for automatic annotation, classification by biological function, and comparative transcriptomics. Genes related to spider silks were manually curated and analyzed. Although a single spidroin gene family was found in Actinopus spp., a vast repertoire of specialized spider silk proteins was encountered in orbiculariae. Astacin-like metalloproteases (meprin subfamily) were shown to be some of the most sampled unigenes and duplicated gene families in G. cancriformis since its evolutionary split from mygalomorphs. Our results confirm that the evolution of the molecular repertoire of silk proteins was accompanied by the (i) anatomical differentiation of spinning glands and (ii) behavioral complexification in the web usage. Finally, a phylogenetic tree was constructed to cluster most of the known spidroins in gene clades. This is the first large-scale, multi-organism transcriptome for spider spinning glands and a first step into a broad understanding of spider web systems biology and evolution

    The germline mutational landscape of BRCA1 and BRCA2 in Brazil

    Get PDF
    The detection of germline mutations in BRCA1 and BRCA2 is essential to the formulation of clinical management strategies, and in Brazil, there is limited access to these services, mainly due to the costs/availability of genetic testing. Aiming at the identification of recurrent mutations that could be included in a low-cost mutation panel, used as a first screening approach, we compiled the testing reports of 649 probands with pathogenic/likely pathogenic variants referred to 28 public and private health care centers distributed across 11 Brazilian States. Overall, 126 and 103 distinct mutations were identified in BRCA1 and BRCA2, respectively. Twenty-six novel variants were reported from both genes, and BRCA2 showed higher mutational heterogeneity. Some recurrent mutations were reported exclusively in certain geographic regions, suggesting a founder effect. Our findings confirm that there is significant molecular heterogeneity in these genes among Brazilian carriers, while also suggesting that this heterogeneity precludes the use of screening protocols that include recurrent mutation testing only. This is the first study to show that profiles of recurrent mutations may be unique to different Brazilian regions. These data should be explored in larger regional cohorts to determine if screening with a panel of recurrent mutations would be effective.This work was supported in part by grants from Barretos Cancer Hospital (FINEP - CT-INFRA, 02/2010), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2013/24633-2 and 2103/23277-8), Fundação de Apoio à Pesquisa do Rio Grande do Norte (FAPERN), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Ministério da Saúde, the Breast Cancer Research Foundation (Avon grant #02-2013-044) and National Institute of Health/National Cancer Institute (grant #RC4 CA153828-01) for the Clinical Cancer Genomics Community Research Network. Support in part was provided by grants from Fundo de Incentivo a Pesquisa e Eventos (FIPE) from Hospital de Clínicas de Porto Alegre, by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, BioComputacional 3381/2013, Rede de Pesquisa em Genômica Populacional Humana), Secretaria da Saúde do Estado da Bahia (SESAB), Laboratório de Imunologia e Biologia Molecular (UFBA), INCT pra Controle do Câncer and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). RMR and PAP are recipients of CNPq Productivity Grants, and Bárbara Alemar received a grant from the same agencyinfo:eu-repo/semantics/publishedVersio

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum β-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 10 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status. [Abstract copyright: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum β-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (&lt;0.1% to 38.3%), being positively correlated (p &lt; 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status
    corecore