1,645 research outputs found

    Genetic and morphometric variation in Schwarziana quadripunctata and Schwarziana mourei (Hymenoptera: Apidae: Meliponini)

    Get PDF
    Schwarziana bees are a ground-nesting stingless bee distributed in the Neotropical region. Schwarziana quadripunctata was the first described and the most studied species of this genus. Now, there are four valid species of Schwarziana bees, but it has been suggested that the diversity of this taxon may be higher, due to undescribed cryptic species. In this study, we investigated the populational diversity of S. quadripunctata using workers collected at 11 localities in Brazil (from the Northeast to South region). We also included one population of S. mourei (collected in São Paulo state, 2 nests). We analysed the bees using geometric morphometrics and molecular analyses amplifying mtDNA cytochrome oxidase I (COI) and 16S to access the diversity among the populations. From the results of geometric morphometrics, the Mahalanobis distances between S. mourei and S. quadripunctata are greater than those distances among S. quadripunctata populations. A similar scenario can also be observed looking to the phylogenetic tree generated by the molecular markers. Morphometry and molecular markers data showed significant association with geographic distance, indicating the existence of intrapopulation variation in S. quadripunctata. Our hypothesis was supported, that the populations of S. quadripunctata showed differences in haplotypic diversity. Overall, these analyses revealed a moderate level of intraspecific variation among S. quadripunctata populations and discriminated well the species S. quadripunctata from S. mourei

    Chloroxine overrides DNA damage tolerance to restore platinum sensitivity in high-grade serous ovarian cancer

    Get PDF
    High-grade serous cancer (HGSC) accounts for ~67% of all ovarian cancer deaths. Although initially sensitive to platinum chemotherapy, resistance is inevitable and there is an unmet clinical need for novel therapies that can circumvent this event. We performed a drug screen with 1177 FDA-approved drugs and identified the hydroxyquinoline drug, chloroxine. In extensive validation experiments, chloroxine restored sensitivity to both cisplatin and carboplatin, demonstrating broad synergy in our range of experimental models of platinum-resistant HGSC. Synergy was independent of chloroxine’s predicted ionophore activity and did not relate to platinum uptake as measured by atomic absorption spectroscopy. Further mechanistic investigation revealed that chloroxine overrides DNA damage tolerance in platinum-resistant HGSC. Co-treatment with carboplatin and chloroxine (but not either drug alone) caused an increase in γH2AX expression, followed by a reduction in platinum-induced RAD51 foci. Moreover, this unrepaired DNA damage was associated with p53 stabilisation, cell cycle re-entry and triggering of caspase 3/7- mediated cell death. Finally, in our platinum-resistant, intraperitoneal in vivo model, treatment with carboplatin alone resulted in a transient tumour response followed by tumour regrowth. In contrast, treatment with chloroxine and carboplatin combined, was able to maintain tumour volume at baseline for over 4 months. In conclusion, our novel results show that chloroxine facilitates platinum-induced DNA damage to restore platinum sensitivity in HGSC. Since chloroxine is already licensed, this exciting combination therapy could now be rapidly translated for patient benefit

    Emergent Gauge Fields in Holographic Superconductors

    Full text link
    Holographic superconductors have been studied so far in the absence of dynamical electromagnetic fields, namely in the limit in which they coincide with holographic superfluids. It is possible, however, to introduce dynamical gauge fields if a Neumann-type boundary condition is imposed on the AdS-boundary. In 3+1 dimensions, the dual theory is a 2+1 dimensional CFT whose spectrum contains a massless gauge field, signaling the emergence of a gauge symmetry. We study the impact of a dynamical gauge field in vortex configurations where it is known to significantly affect the energetics and phase transitions. We calculate the critical magnetic fields H_c1 and H_c2, obtaining that holographic superconductors are of Type II (H_c1 < H_c2). We extend the study to 4+1 dimensions where the gauge field does not appear as an emergent phenomena, but can be introduced, by a proper renormalization, as an external dynamical field. We also compare our predictions with those arising from a Ginzburg-Landau theory and identify the generic properties of Abrikosov vortices in holographic models.Comment: 19 pages, 14 figures, few comments added, version published in JHE

    Lymphocyte gene expression signatures from patients and mouse models of hereditary hemochromatosis reveal a function of HFE as a negative regulator of CD8+ T-lymphocyte activation and differentiation in vivo

    Get PDF
    Abnormally low CD8+ T-lymphocyte numbers is characteristic of some patients with hereditary hemochromatosis (HH), a MHC-linked disorder of iron overload. Both environmental and genetic components are known to influence CD8+ T-lymphocyte homeostasis but the role of the HH associated protein HFE is still insufficiently understood. Genome-wide expression profiling was performed in peripheral blood CD8+ T lymphocytes from HH patients selected according to CD8+ T-lymphocyte numbers and from Hfe-/- mice maintained either under normal or high iron diet conditions. In addition, T-lymphocyte apoptosis and cell cycle progression were analyzed by flow cytometry in HH patients. HH patients with low CD8+ T-lymphocyte numbers show a differential expression of genes related to lymphocyte differentiation and maturation namely CCR7, LEF1, ACTN1, NAA50, P2RY8 and FOSL2, whose expression correlates with the relative proportions of naïve, central and effector memory subsets. In addition, expression levels of LEF1 and P2RY8 in memory cells as well as the proportions of CD8+ T cells in G2/M cell cycle phase are significantly different in HH patients compared to controls. Hfe-/- mice do not show alterations in CD8+ T-lymphocyte numbers but differential gene response patterns. We found an increased expression of S100a8 and S100a9 that is most pronounced in high iron diet conditions. Similarly, CD8+ T lymphocytes from HH patients display higher S100a9 expression both at the mRNA and protein level. Altogether, our results support a role for HFE as a negative regulator of CD8+ T-lymphocyte activation. While the activation markers S100a8 and S100a9 are strongly increased in CD8+ T cells from both, Hfe-/- mice and HH patients, a differential profile of genes related to differentiation/maturation of CD8+ T memory cells is evident in HH patients only. This supports the notion that HFE contributes, at least in part, to the generation of low peripheral blood CD8+ T lymphocytes in HH

    The role of TcdB and TccC subunits in secretion of the photorhabdus Tcd toxin complex

    Get PDF
    The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5:1:1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man

    Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period

    Get PDF
    From June 2004 to December 2007, samples were weekly collected at a fixed station located at the mouth of Ria de Aveiro (West Iberian Margin). We examined the seasonal and inter-annual fluctuations in composition and community structure of the phytoplankton in relation to the main environmental drivers and assessed the influence of the oceano-graphic regime, namely changes in frequency and intensity of upwelling events, over the dynamics of the phytoplankton assemblage. The samples were consistently handled and a final subset of 136 OTUs (taxa with relative abundance > 0.01%) was subsequently submitted to various multivariate analyses. The phytoplankton assemblage showed significant changes at all temporal scales but with an overriding importance of seasonality over longer-(inter-annual) or shorter-term fluctuations (upwelling-related). Sea-surface temperature, salinity and maximum upwelling index were retrieved as the main driver of seasonal change. Seasonal signal was most evident in the fluctuations of chlorophyll a concentration and in the high turnover from the winter to spring phytoplankton assemblage. The seasonal cycle of production and succession was disturbed by upwelling events known to disrupt thermal stratification and induce changes in the phytoplankton assemblage. Our results indicate that both the frequency and intensity of physical forcing were important drivers of such variability, but the outcome in terms of species composition was highly dependent on the available local pool of species and the timing of those events in relation to the seasonal cycle. We conclude that duration, frequency and intensity of upwelling events, which vary seasonally and inter-annually, are paramount for maintaining long-term phytoplankton diversity likely by allowing unstable coexistence and incorporating species turnover at different scales. Our results contribute to the understanding of the complex mechanisms of coastal phytoplankton dynamics in relation to changing physical forcing which is fundamental to improve predictability of future prospects under climate change.Portuguese Foundation for Science and Technology (FCT, Portugal) [SFRH/BPD/ 94562/2013]; FEDER funds; national funds; CESAM [UID/AMB/50017]; FCT/MEC through national funds; FEDERinfo:eu-repo/semantics/publishedVersio

    Murine Dendritic Cells Transcriptional Modulation upon Paracoccidioides brasiliensis Infection

    Get PDF
    Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-α, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this β-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen

    Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection

    Get PDF
    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model
    corecore