1,626 research outputs found

    Screening forCronobacterSpecies in Powdered and Reconstituted Infant Formulas and from Equipment Used in Formula Preparation in Maternity Hospitals

    Get PDF
    Background/Aims: Cronobacter spp. have been identified as being of considerable risk to neonates. The occurrence of organism in infant formulas is therefore of considerable interest. Methods: The occurrence of Cronobacter spp. in infant feeds (formulas and fortified cow’s milk) was determined using most probable number (MPN) analysis, and from formula preparation utensils. Ninety nine samples were analyzed, of which 42 were unopened cans of powdered infant formula (PIF), 25 reconstituted infant formulas in feeding bottles, 27 utensils used from the preparation of infant formula, and 5 samples of fortified cow’s milk. Presumptive Cronobacter spp. isolates were identified using the 7 allele multilocus sequence typing (MLST) scheme. Results: C. sakazakii, C. malonaticus and C. muytjensii were recovered from PIF. Although the incidence of Cronobacter in PIF was 29% (12/42), the level was low with an average of 0.54 MPN/100g. According to MLST profiling, C. sakazakii was the most frequently isolated Cronobacter species, and C. sakazakii ST4 (associated with neonatal meningitis) was recovered from 2/42 PIF samples at 0.51 and 0.92 MPN/100g. Conclusions: Cronobacter spp. can be isolated from PIF and therefore strict hygienic practices during PIF preparation are important to minimize neonate exposure and reduce the risk of severe infections

    Genome Sequence of Corynebacterium pseudotuberculosis MB20 bv. equi Isolated from a Pectoral Abscess of an Oldenburg Horse in California.

    Get PDF
    The genome of Corynebacterium pseudotuberculosis MB20 bv. equi was sequenced using the Ion Personal Genome Machine (PGM) platform, and showed a size of 2,363,089 bp, with 2,365 coding sequences and a GC content of 52.1%. These results will serve as a basis for further studies on the pathogenicity of C. pseudotuberculosis bv. equi

    Computer-Generated Ovaries to Assist Follicle Counting Experiments

    Get PDF
    Precise estimation of the number of follicles in ovaries is of key importance in the field of reproductive biology, both from a developmental point of view, where follicle numbers are determined at specific time points, as well as from a therapeutic perspective, determining the adverse effects of environmental toxins and cancer chemotherapeutics on the reproductive system. The two main factors affecting follicle number estimates are the sampling method and the variation in follicle numbers within animals of the same strain, due to biological variability. This study aims at assessing the effect of these two factors, when estimating ovarian follicle numbers of neonatal mice. We developed computer algorithms, which generate models of neonatal mouse ovaries (simulated ovaries), with characteristics derived from experimental measurements already available in the published literature. The simulated ovaries are used to reproduce in-silico counting experiments based on unbiased stereological techniques; the proposed approach provides the necessary number of ovaries and sampling frequency to be used in the experiments given a specific biological variability and a desirable degree of accuracy. The simulated ovary is a novel, versatile tool which can be used in the planning phase of experiments to estimate the expected number of animals and workload, ensuring appropriate statistical power of the resulting measurements. Moreover, the idea of the simulated ovary can be applied to other organs made up of large numbers of individual functional units

    Electronic and magnetic properties of SnO2/CrO2 thin superlattices

    Get PDF
    In this article, using first-principles electronic structure calculations within the spin density functional theory, alternated magnetic and non-magnetic layers of rutile-CrO2 and rutile-SnO2 respectively, in a (CrO2)n(SnO2)n superlattice (SL) configuration, with n being the number of monolayers which are considered equal to 1, 2, ..., 10 are studied. A half-metallic behavior is observed for the (CrO2)n(SnO2)n SLs for all values of n. The ground state is found to be FM with a magnetic moment of 2 μB per chromium atom, and this result does not depend on the number of monolayers n. As the FM rutile-CrO2 is unstable at ambient temperature, and known to be stabilized when on top of SnO2, the authors suggest that (CrO2)n(SnO2)n SLs may be applied to spintronic technologies since they provide efficient spin-polarized carriers
    • …
    corecore