55 research outputs found

    Unique PFK regulatory property from some mosquito vectors of disease, and from Drosophila melanogaster

    Get PDF
    Effect of F2, 6BP on Aedes aegypti PFK activity. PFK activity was measured at pH = 7.4, 1 mM F6P, 5 mM ATP at several F2, 6BP concentrations (0.01–50 ΌM). Values are the means ± SEM of three independent experiments. (TIF 466 kb

    ComposiçÔes microbicidas, processos para sua obtenção, construçÔes gĂȘnicas, processos para o controle de pestes

    Get PDF
    Em 17/03/2016: Anuidade de pedido de patente de invenção no prazo ordinĂĄrioDepositadaA presente invenção Ă© relacionada a fatores antimicrobianos extraĂ­dos de envoltĂłrios protetores (cascas) de ovos de insetos. A maioria destes fatores compreende peptĂ­deos e/ou proteĂ­nas obtidas de tais involuntĂĄrios e/ou de seus respectivos genes codificantes, em construçÔes gĂȘnicas artificiais. SĂŁo descritas composiçÔes microbicidas e processos para sua obtenção, bem como construçÔes gĂȘnicas e processos para o controle de pestes

    CK2 Phosphorylation of Schistosoma mansoni HMGB1 Protein Regulates Its Cellular Traffic and Secretion but Not Its DNA Transactions

    Get PDF
    parasite resides in mesenteric veins where fecundated female worms lay hundred of eggs daily. Some of the egg antigens are trapped in the liver and induce a vigorous granulomatous response. High Mobility Group Box 1 (HMGB1), a nuclear factor, can also be secreted and act as a cytokine. Schistosome HMGB1 (SmHMGB1) is secreted by the eggs and stimulate the production of key cytokines involved in the pathology of schistosomiasis. Thus, understanding the mechanism of SmHMGB1 release becomes mandatory. Here, we addressed the question of how the nuclear SmHMGB1 can reach the extracellular space. eggs of infected animals and that SmHMGB1 that were localized in the periovular schistosomotic granuloma were phosphorylated.We showed that secretion of SmHMGB1 is regulated by phosphorylation. Moreover, our results suggest that egg-secreted SmHMGB1 may represent a new egg antigen. Therefore, the identification of drugs that specifically target phosphorylation of SmHMGB1 might block its secretion and interfere with the pathogenesis of schistosomiasis

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Bacterial community composition in the salivary glands of triatomines (Hemiptera: Reduviidae).

    No full text
    BACKGROUND:Chagas disease is caused by the parasite Trypanosoma cruzi and is transmitted through triatomines (Hemiptera: Reduviidae). In the last year, many studies of triatomine gut microbiota have outlined its potential role in modulating vector competence. However, little is known about the microbiota present in the salivary glands of triatomines. Bacterial composition of salivary glands in selected triatomine species was investigated, as well as environmental influences on the acquisition of bacterial communities. METHODOLOGY/PRINCIPAL FINDINGS:The diversity of the bacterial communities of 30 pairs of salivary glands of triatomines was studied by sequencing of the V1- V3 variable region of the 16S rRNA using the MiSeq platform (Illumina), and bacteria isolated from skin of three vertebrate hosts were identified based on 16S rRNA gene sequence analysis (targeting the V3-V5 region). In a comparative analysis of microbiota in the salivary glands of triatomine species, operational taxonomic units belonging to Arsenophonous appeared as dominant in Triatoma spp (74% of the total 16S coverage), while these units belonging to unclassified Enterobacteriaceae were dominant in the Rhodnius spp (57% of the total 16S coverage). Some intraspecific changes in the composition of the triatomine microbiota were observed, suggesting that some bacteria may have been acquired from the environment. CONCLUSIONS AND SIGNIFICANCE:Our study revealed the presence of a low-diversity microbiota associated to the salivary glands of the evaluated triatomines. The predominant bacteria genera are associated with triatomine genera and the bacteria can be acquired in the environment in which the insects reside. Further studies are necessary to determine the influence of bacterial communities on vector competence

    CK2 Secreted by Leishmania braziliensis Mediates Macrophage Association Invasion: A Comparative Study between Virulent and Avirulent Promastigotes

    No full text
    CK2 is a protein kinase distributed in different compartments of Leishmania braziliensis: an externally oriented ecto-CK2, an intracellular CK2, and a secreted CK2. This latter form is constitutively secreted from the parasite (CsCK2), but such secretion may be highly enhanced by the association of specific molecules, including enzyme substrates, which lead to a higher enzymatic activity, called inductively secreted CK2 (IsCK2). Here, we examined the influence of secreted CK2 (sCK2) activity on the infectivity of a virulent L. braziliensis strain. The virulent strain presented 121-fold higher total CK2 activity than those found in an avirulent strain. The use of specific CK2 inhibitors (TBB, DRB, or heparin) inhibited virulent parasite growth, whereas no effect was observed in the avirulent parasites. When these inhibitors were added to the interaction assays between the virulent L. braziliensis strain and macrophages, association index was drastically inhibited. Polyamines enhanced sCK2 activity and increased the association index between parasites and macrophages. Finally, sCK2 and the supernatant of the virulent strain increased the association index between the avirulent strain and macrophages, which was inhibited by TBB. Thus, the kinase enzyme CK2 seems to be important to invasion mechanisms of L. braziliensis

    Lysophosphatidylcholine Triggers TLR2- and TLR4- Mediated Signaling Pathways but Counteracts LPSInduced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-ÎșB Translocation and MAPK/ERK Phosphorylation

    Get PDF
    Made available in DSpace on 2015-09-28T13:02:39Z (GMT). No. of bitstreams: 2 license.txt: 1914 bytes, checksum: 7d48279ffeed55da8dfe2f8e81f3b81f (MD5) igor_almeida_etal_IOC_2013.pdf: 680569 bytes, checksum: 68dcc939113bc5eb10c5deee819a7ff8 (MD5) Previous issue date: 2013Universidade Federal do Rio de Janeiro. Centro de CiĂȘncias da SaĂșde. Instituto de BioquĂ­mica MĂ©dica. Programa de Biologia Molecular e Biotecnologia. Instituto Nacional de CiĂȘncia e Tecnologia em Entomologia Molecular- INCT-EM. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Centro de CiĂȘncias da SaĂșde. Instituto de BioquĂ­mica MĂ©dica. Programa de Biologia Molecular e Biotecnologia. Instituto Nacional de CiĂȘncia e Tecnologia em Entomologia Molecular- INCT-EM. Rio de Janeiro, RJ, Brasil.University of Texas at El Paso. Department of Biological Sciences. The Border Biomedical Research Center. El Paso, Texas, USA.University of Texas at El Paso. Department of Biological Sciences. The Border Biomedical Research Center. El Paso, Texas, USA / Universidade de SĂŁo Paulo. Faculdade de Medicina de RibeirĂŁo Preto. Departamento de Biologia Celular e Molecular PatogĂȘnicos. RibeirĂŁo Preto, SP, Brasil.University of Texas at El Paso. Department of Biological Sciences. The Border Biomedical Research Center. El Paso, Texas, USA.University of Texas at El Paso. Department of Biological Sciences. The Border Biomedical Research Center. El Paso, Texas, USA / Universidade de SĂŁo Paulo. Faculdade de Medicina de RibeirĂŁo Preto. Departamento de Biologia Celular e Molecular PatogĂȘnicos. RibeirĂŁo Preto, SP, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Imunofarmacologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Centro de CiĂȘncias da SaĂșde. Instituto de BiofĂ­sica Carlos Chagas Filho. LaboratĂłrio de Parasitologia Molecular. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Centro de CiĂȘncias da SaĂșde. Instituto de BioquĂ­mica MĂ©dica. Programa de Biologia Molecular e Biotecnologia. Instituto Nacional de CiĂȘncia e Tecnologia em Entomologia Molecular- INCT-EM. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Imunofarmacologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Centro de CiĂȘncias da SaĂșde. Instituto de BioquĂ­mica MĂ©dica. Programa de Biologia Molecular e Biotecnologia. Instituto Nacional de CiĂȘncia e Tecnologia em Entomologia Molecular- INCT-EM. Rio de Janeiro, RJ, Brasil.Background: Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. Methodology/Principal Findings: HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. Conclusions/Significance: The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression
    • 

    corecore