23,240 research outputs found

    Temperature dependence of antiferromagnetic susceptibility in ferritin

    Get PDF
    We show that antiferromagnetic susceptibility in ferritin increases with temperature between 4.2 K and 180 K (i. e. below the N\'{e}el temperature) when taken as the derivative of the magnetization at high fields (30×10430\times10^4 Oe). This behavior contrasts with the decrease in temperature previously found, where the susceptibility was determined at lower fields (5×1045\times10^4 Oe). At high fields (up to 50×10450 \times10^4 Oe) the temperature dependence of the antiferromagnetic susceptibility in ferritin nanoparticles approaches the normal behavior of bulk antiferromagnets and nanoparticles considering superantiferromagnetism, this latter leading to a better agreement at high field and low temperature. The contrast with the previous results is due to the insufficient field range used (<5×104< 5 \times10^4 Oe), not enough to saturate the ferritin uncompensated moment.Comment: 7 pages, 7 figures, accepted in Phys. Rev.

    Accessibility and Usage of Digital Technologies among Academics for Research: A Case of Selected Humanities and Social Sciences Faculties in Sri Lankan Universities

    Get PDF
    The Humanities and Social Sciences (HSS) involve understanding the human experience and the relationships between individuals and groups in society. The adoption of digital technologies has challenged the discipline of HSS, creating an entirely new environment for the study of human activities. This research aims to explore the employment of digital tools, resources and services in HSS research. Further, the use of digital methods (DM) throughout the research process; the impact of COVID-19 on the use of DM in research; the constraints of using DM in research were tested. Both quantitative and qualitative data were collected from Colombo, Kelaniya and Sri Jayewardenepura universities targeting academics in Economics, English, English Language Teaching, Geography, History and Archeology, Buddhist Studies, Political Science, Sinhala, and Sociology. Considering the digital infrastructure facilities, most of the academics rated email (45.6%) and LMS services (46.7%) as excellent but maintenance provided by the institute was not adequate. Most academics rated good on access to data storage (37.9%); reference management software (27.5%); plagiarism detection software (29.1%); institutional repository (35.2%); and support to online publications (39.6%) provided by their institutes. 55.7% of surveyed academics in SS often use digital data collection methods while in the Humanities it was 43.4%. Online publishing was most often used by SS (50.9%) and only 39.5% by the Humanities. 53.8% of SS academics and 43.4% of humanities academics often use cloud storage. Findings confirmed the expansion of using digital research methods during the pandemic compared to the early pandemic situation. Collaborative research works, virtual conferences, citation databases and digital indexing were identified as popular trends. DOI: http://doi.org/10.31357/fhss/vjhss.v08i02.0

    Correlation length scalings in fusion edge plasma turbulence computations

    Full text link
    The effect of changes in plasma parameters, that are characteristic near or at an L-H transition in fusion edge plasmas, on fluctuation correlation lengths are analysed by means of drift-Alfven turbulence computations. Scalings by density gradient length, collisionality, plasma beta, and by an imposed shear flow are considered. It is found that strongly sheared flows lead to the appearence of long-range correlations in electrostatic potential fluctuations parallel and perpendicular to the magnetic field.Comment: Submitted to "Plasma Physics and Controlled Fusion

    Shifted loops and coercivity from field imprinted high energy barriers in ferritin and ferrihydrite nanoparticles

    Get PDF
    We show that the coercive field in ferritin and ferrihydrite depends on the maximum magnetic field in a hysteresis loop and that coercivity and loop shifts depend both on the maximum and cooling fields. In the case of ferritin we show that the time dependence of the magnetization also depends on the maximum and previous cooling fields. This behavior is associated to changes in the intra-particle energy barriers imprinted by these fields. Accordingly, the dependence of the coercive and loop shift fields with the maximum field in ferritin and ferrihydrite can be described within the frame of a uniform-rotation model considering a dependence of the energy barrier with the maximum and the cooling fields.Comment: 8 pages, 5 figures. Accepted for publication in Phys. Rev. B. Final version with improved writing and figure

    Charge-transfer metal-insulator transitions in the spin-one-half Falicov-Kimball model

    Full text link
    The spin-one-half Falicov-Kimball model is solved exactly on an infinite-coordination-number Bethe lattice in the thermodynamic limit. This model is a paradigm for a charge-transfer metal-insulator transition where the occupancy of localized and delocalized electronic orbitals rapidly changes at the metal-insulator transition (rather than the character of the electronic states changing from insulating to metallic as in a Mott-Hubbard transition). The exact solution displays both continuous and discontinuous (first-order) transitions.Comment: 22 pages including 4 figures(eps), RevTe

    Monte Carlo Comparisons to a Cryogenic Dark Matter Search Detector with low Transition-Edge-Sensor Transition Temperature

    Full text link
    We present results on phonon quasidiffusion and Transition Edge Sensor (TES) studies in a large, 3 inch diameter, 1 inch thick [100] high purity germanium crystal, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare calibration data with results from a Monte Carlo which includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels. The phonon energy is then parsed into TES based phonon readout channels and input into a TES simulator

    Radion Stabilization in Compact Hyperbolic Extra Dimensions

    Full text link
    We consider radion stabilization in hyperbolic brane-world scenarios. We demonstrate that in the context of Einstein gravity, matter fields which stabilize the extra dimensions must violate the null energy condition. This result is shown to hold even allowing for FRW-like expansion on the brane. In particular, we explicitly demonstrate how one putative source of stabilizing matter fails to work, and how others violate the above condition. We speculate on a number of ways in which we may bypass this result, including the effect of Casimir energy in these spaces. A brief discussion of supersymmetry in these backgrounds is also given.Comment: 16 pages, 1 figur
    corecore