632 research outputs found
Optimal Pricing of Flights and Passengers at Congested Airports: The Efficiency of Atomistic Charges
This paper investigates optimal airport pricing when airlines provide imperfect substitutes products, and make decisions on capacity, scheduling and pricing. We show that the first-best toll per flight may be higher than the simple market-shares formulae that were recently derived for Cournot models, and approaches the atomistic toll (which ignores the airlines' internalization of self-imposed congestion) as products become closer substitutes. This increases the relevance of congestion pricing and does not require leadership behavior. We also find that an airport requires two pricing instruments to achieve the first-best outcome: per-passenger subsidies to counteract airlines' market power, and per-flight tolls to correct congestion externalities. We numerically analyze second-best policies of having only one tax instrument, as well as the performance of atomistic pricing, and find that the latter may offer a more attractive alternative than what is suggested by simpler Cournot models
Airlines' Strategic Interactions and Airport Pricing in a Dynamic Bottleneck Model of Congestion
This paper analyzes efficient pricing at a congested airport dominated by a single firm. Unlike much of the previous literature, we combine a dynamic (bottleneck) model of congestion and a vertical structure model that explicitly considers the role of airlines and passengers. We show that when a Stackelberg leader interacts with a competitive fringe, charging the congestion toll that is derived for fully atomistic carriers to both leader and fringe yields the first-best outcome. This holds regardless of the leader's internalization of congestion in the unregulated equilibrium, and regardless of the assumed demand substitution pattern between firms. This result implies that the financial deficit under optimal pricing may be less severe than what earlier studies suggest. Finally, we show that there are various alternative toll regimes that also induce the welfare maximizing outcome, and therefore widen the set of choices for regulators
Design of a nanostructured mucoadhesive system containing curcumin for buccal application : from physicochemical to biological aspects
Mucoadhesive nanostructured systems comprising poloxamer 407 and Carbopol 974P® have already demonstrated good mucoadhesion, as well as improved mechanical and rheological properties. Curcumin displays excellent biological activity, mainly in oral squamous cancer; however, its physicochemical characteristics hinder its application. Therefore, the aim of this study was to develop nanostructured formulations containing curcumin for oral cancer therapy. The photophysical interactions between curcumin and the formulations were elucidated by incorporation kinetics and location studies. They revealed that the drug was quickly incorporated and located in the hydrophobic portion of nanometer-sized polymeric micelles. Moreover, the systems displayed plastic behavior with rheopexy characteristics at 37 °C, viscoelastic properties and a gelation temperature of 36 °C, which ensures increased retention after application in the oral cavity. The mucoadhesion results confirmed the previous findings with the nanostructured systems showing a residence time of 20 min in porcine oral mucosa under flow system conditions. Curcumin was released after 8 h and could permeate through the porcine oral mucosa. Cytotoxicity testing revealed that the formulations were selective to cancer cells over healthy cells. Therefore, these systems could improve the physicochemical characteristics of curcumin by providing improved release and permeation, while selectivity targeting cancer cells
Approaching a fully-polarized state of nuclear spins in a solid
Magnetic noise of atomic nuclear spins is a major source of decoherence in solid-state spin qubits. In theory, near-unity nuclear spin polarization can eliminate decoherence of the electron spin qubit, while turning the nuclei into a useful quantum information resource. However, achieving sufficiently high nuclear polarizations has remained an evasive goal. Here we implement a nuclear spin polarization protocol which combines strong optical pumping and fast electron tunneling. Nuclear polarizations well above 95% are generated in GaAs semiconductor quantum dots on a timescale of 1 minute. The technique is compatible with standard quantum dot device designs, where highly-polarized nuclear spins can simplify implementations of qubits and quantum memories, as well as offer a testbed for studies of many-body quantum dynamics and magnetism
Measurement of the cosmic microwave background polarization lensing power spectrum from two years of POLARBEAR data
We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of AL = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first- year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination
EMC testing of electricity meters using real-world and artificial current waveforms
In 2015, the energy measurement of some static electricity meters was found to be sensitive to specific conducted electromagnetic disturbances with very fast current changes caused by highly nonlinear loads, leading to meter errors up to several hundred percent. This article describes new results on the electromagnetic compatibility (EMC) of 16 different meters from all over Europe when exposed to real-world disturbance signals. Those test signals were obtained from household appliances and onsite measurements at metered supply points all over Europe. The results show that also the interference signals recorded onsite can cause measurement errors as large as several hundred percent, even for meters that pass the present EMC standards. This unambiguously demonstrates that the present immunity testing standards do not cover the most disturbing conducted interference occurring in present daily-life situations due to the increased use of nonlinear electronics. Furthermore, to enable the adoption of potential new test waveforms in future standards for electricity meter testing, artificial test waveforms were constructed based on real-world waveforms using a piece-wise linear model. These artificial test waveforms were demonstrated to cause meter errors similar to those caused by the original real-life waveforms they are representing, showing that they are suitable candidates for use in improved standardization of electricity meter testing.Postprint (published version
Horizons, Constraints, and Black Hole Entropy
Black hole entropy appears to be ``universal''--many independent
calculations, involving models with very different microscopic degrees of
freedom, all yield the same density of states. I discuss the proposal that this
universality comes from the behavior of the underlying symmetries of the
classical theory. To impose the condition that a black hole be present, we must
partially break the classical symmetries of general relativity, and the
resulting Goldstone boson-like degrees of freedom may account for the
Bekenstein-Hawking entropy. In particular, I demonstrate that the imposition of
a ``stretched horizon'' constraint modifies the algebra of symmetries at the
horizon, allowing the use of standard conformal field theory techniques to
determine the asymptotic density of states. The results reproduce the
Bekenstein-Hawking entropy without any need for detailed assumptions about the
microscopic theory.Comment: 16 pages, talk given at the "Peyresq Physics 10 Meeting on Micro and
Macro structures of spacetime
Abundances of the elements in the solar system
A review of the abundances and condensation temperatures of the elements and
their nuclides in the solar nebula and in chondritic meteorites. Abundances of
the elements in some neighboring stars are also discussed.Comment: 42 pages, 11 tables, 8 figures, chapter, In Landolt- B\"ornstein, New
Series, Vol. VI/4B, Chap. 4.4, J.E. Tr\"umper (ed.), Berlin, Heidelberg, New
York: Springer-Verlag, p. 560-63
- …