78 research outputs found

    Comparative cytogenetics of spiny rats of the genus proechimys (Rodentia, Echimyidae) from the Amazon region

    Get PDF
    We made a comparative analysis of the cytogenetics of spiny rat species of the genus Proechimys collected from several sites of the Madeira River basin (Amazonas State, Brazil) and Jari River valley (Pará State, Brazil). Individuals were assigned to three groups based on diploid and fundamental numbers: 2n=28, FN=46 (P. cuvieri and P. gr. longicaudatus); 2n=38, FN=52 (Proechimys gr. guyannensis), and 2n=40, FN=54 (P. gardneri). The nucleolar organizer region (NOR) was interstitial on the long arm of one submetacentric pair, as seen in all species of Proechimys analyzed thus far. However, its position in the karyotype was variable. A duplication of the NOR in one of the homologues was detected in P. gr. longicaudatus from the Aripuanã basin along the mid Madeira. The C-band pattern varied between species and, together with the NOR, allowed the identification of two evolutionary units in P. gr. longicaudatus in the region of the mid Madeira River (cytotypes A and B). The morphology and banding of the sex chromosomes were species specific. A range extension is suggested for the geographic distribution of P. gardneri and P. gr. longicaudatus. Moreover, we suggest that species of Proechimys with 2n=38 chromosomes are restricted to east of the Negro River and north of the Amazon River. We also revised the published chromosome data available for Proechimys. © FUNPEC-RP

    Community structure and diversity of tropical forest mammals: Data from a global camera trap network

    Get PDF
    Terrestrial mammals are a key component of tropical forest communities as indicators of ecosystem health and providers of important ecosystem services. However, there is little quantitative information about how they change with local, regional and global threats. In this paper, the first standardized pantropical forest terrestrial mammal community study, we examine several aspects of terrestrial mammal species and community diversity (species richness, species diversity, evenness, dominance, functional diversity and community structure) at seven sites around the globe using a single standardized camera trapping methodology approach. The sites-located in Uganda, Tanzania, Indonesia, Lao PDR, Suriname, Brazil and Costa Rica-are surrounded by different landscape configurations, from continuous forests to highly fragmented forests. We obtained more than 51 000 images and detected 105 species of mammals with a total sampling effort of 12 687 camera trap days. We find thatmammal communities from highly fragmented sites have lower species richness, species diversity, functional diversity and higher dominance when compared with sites in partially fragmented and continuous forest. We emphasize the importance of standardized camera trapping approaches for obtaining baselines for monitoring forest mammal communities so as to adequately understand the effect of global, regional and local threats and appropriately inform conservation actions. © 2011 The Royal Society

    Limited carbon and biodiversity co-benefits for tropical forest mammals and birds

    Get PDF
    The conservation of tropical forest carbon stocks offers the opportunity to curb climate change by reducing greenhouse gas emissions from deforestation and simultaneously conserve biodiversity. However, there has been considerable debate about the extent to which carbon stock conservation will provide benefits to biodiversity in part because whether forests that contain high carbon density in their aboveground biomass also contain high animal diversity is unknown. Here, we empirically examined medium to large bodied ground-dwelling mammal and bird (hereafter "wildlife") diversity and carbon stock levels within the tropics using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested whether tropical forests that stored more carbon contained higher wildlife species richness, taxonomic diversity, and trait diversity. We found that carbon stocks were not a significant predictor for any of these three measures of diversity, which suggests that benefits for wildlife diversity will not be maximized unless wildlife diversity is explicitly taken into account; prioritizing carbon stocks alone will not necessarily meet biodiversity conservation goals. We recommend conservation planning that considers both objectives because there is the potential for more wildlife diversity and carbon stock conservation to be achieved for the same total budget if both objectives are pursued in tandem rather than independently. Tropical forests with low elevation variability and low tree density supported significantly higher wildlife diversity. These tropical forest characteristics may provide more affordable proxies of wildlife diversity for future multi-objective conservation planning when fine scale data on wildlife are lacking
    • …
    corecore