34 research outputs found

    The Effect of Fertilization on Biomass and Metabolism in North Carolina Salt Marshes: Modulated by Location-Specific Factors

    Get PDF
    The resilience of salt marshes to sea level rise depends on vertical accretion through belowground biomass production and sediment deposition to maintain elevation above sea level. Increased nitrogen (N) availability from anthropogenic sources may stimulate aboveground biomass production and sediment deposition and, thus, accretion; however, increased N may also negatively impact marsh accretion by decreasing belowground biomass and increasing net CO2 emissions. A study was conducted in Spartina alterniflora‐dominated salt marshes in North Carolina, USA, to determine how responses to fertilization vary across locations with different physical and chemical characteristics. Pore water residence time, inundation time, and proximity to tidal creeks drove spatial differences in pore water sulfide, ammonium, and dissolved carbon concentrations. Although annual respiration and gross primary production were greater at the creek edge than interior marsh sites, net ecosystem CO2 exchange (NEE) was nearly balanced at all the sites. Fertilization decreased belowground biomass in the interior sites but not on the creek edge. Aboveground biomass, respiration, gross primary production, and net CO2 emissions increased in response to fertilization, but responses were diminished in interior marsh locations with high pore water sulfide. Hourly NEE measured by chambers were similar to hourly NEE observed by a nearby eddy covariance tower, but correcting for inundation depth relative to plant height was critical for accurate extrapolation to annual fluxes. The impact of fertilization on biomass and NEE, and thus marsh resilience, varied across marsh locations depending upon location‐specific pore water sulfide concentrations

    The Nile perch invasion in Lake Victoria: cause or consequence of the haplochromine decline?

    Get PDF
    We review alternative hypotheses and associated mechanisms to explain Lake Victoria’s Nile perch takeover and concurrent reduction in haplochromines through a (re)analysis of long term climate, limnological and stock observations in comparison with size-spectrum model predictions of co-existence, extinction and demographic change. The empirical observations are in agreement with the outcomes of the model containing two interacting species with life-histories matching Nile perch and a generalized haplochromine. The dynamic interactions may have depended on size related differences in early juvenile mortality: mouth-brooding haplochromines escape predation mortality in early life stages, unlike Nile perch that have miniscule planktonic eggs and larvae. In our model predation on the latter by planktivorous haplochromine fry act as a stabilizing factor for co-existence, but external mortality on the haplochromines would disrupt this balance in favor of Nile perch. To explain the observed switch, mortality on haplochromines would need to be much higher than the fishing mortality that can be realistically re-constructed from observations. Abrupt concomitant changes in algal and zooplankton composition, decreased water column transparency, and widespread hypoxia from increased eutrophication most likely caused haplochromine biomass decline. We hypothesize that the shift to Nile perch was a consequence of an externally caused, climate triggered, decrease in haplochromine biomass and associated recruitment failure rather than a direct cause of the introduction

    Як уникнути підйому рівня води?

    Get PDF
    East Africa’s Lake Victoria provides resources and services to millions of people on the lake’s shores and abroad. In particular, the lake’s fisheries are an important source of protein, employment, and international economic connections for the whole region. Nonetheless, stock dynamics are poorly understood and currently unpredictable. Furthermore, fishery dynamics are intricately connected to other supporting services of the lake as well as to lakeshore societies and economies. Much research has been carried out piecemeal on different aspects of Lake Victoria’s system; e.g., societies, biodiversity, fisheries, and eutrophication. However, to disentangle drivers and dynamics of change in this complex system, we need to put these pieces together and analyze the system as a whole. We did so by first building a qualitative model of the lake’s social-ecological system. We then investigated the model system through a qualitative loop analysis, and finally examined effects of changes on the system state and structure. The model and its contextual analysis allowed us to investigate system-wide chain reactions resulting from disturbances. Importantly, we built a tool that can be used to analyze the cascading effects of management options and establish the requirements for their success. We found that high connectedness of the system at the exploitation level, through fisheries having multiple target stocks, can increase the stocks’ vulnerability to exploitation but reduce society’s vulnerability to variability in individual stocks. We describe how there are multiple pathways to any change in the system, which makes it difficult to identify the root cause of changes but also broadens the management toolkit. Also, we illustrate how nutrient enrichment is not a self-regulating process, and that explicit management is necessary to halt or reverse eutrophication. This model is simple and usable to assess system-wide effects of management policies, and can serve as a paving stone for future quantitative analyses of system dynamics at local scales

    Basin-Scale Control on the Phytoplankton Biomass in Lake Victoria, Africa

    Get PDF
    The relative bio-optical variability within Lake Victoria was analyzed through the spatio-temporal decomposition of a 1997–2004 dataset of remotely-sensed reflectance ratios in the visible spectral range. Results show a regular seasonal pattern with a phase shift (around 2 months) between the south and north parts of the lake. Interannual trends suggested a teleconnection between the lake dynamics and El-Niño phenomena. Both seasonal and interannual patterns were associated to conditions of light limitation for phytoplankton growth and basin-scale hydrodynamics on phytoplankton access to light. Phytoplankton blooms developed during the periods of lake surface warming and water column stability. The temporal shift apparent in the bio-optical seasonal cycles was related to the differential cooling of the lake surface by southeastern monsoon winds. North-south differences in the exposure to trade winds are supported by the orography of the Eastern Great Rift Valley. The result is that surface layer warming begins in the northern part of the lake while the formation of cool and dense water continues in the southern part. The resulting buoyancy field is sufficient to induce a lake-wide convective circulation and the tilting of the isotherms along the north-south axis. Once surface warming spreads over the whole lake, the phytoplankton bloom dynamics are subjected to the internal seiche derived from the relaxation of thermocline tilting. In 1997–98, El-Niño phenomenon weakened the monsoon wind flow which led to an increase in water column stability and a higher phytoplankton optical signal throughout the lake. This suggests that phytoplankton response to expected climate scenarios will be opposite to that proposed for nutrient-limited great lakes. The present analysis of remotely-sensed bio-optical properties in combination with environmental data provides a novel basin-scale framework for research and management strategies in Lake Victoria

    IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation Volume 7.0. Aquatic Primary Productivity Field Protocols for Satellite Validation and Model Synthesis. (IOCCG Protocols Series, Volume 7.0). DOI: http://dx.doi.org/10.25607/OBP-1835

    Get PDF
    In 2018, a working group sponsored by the NASA Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) project, in conjunction with the International Ocean Colour Coordinating Group (IOCCG), European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and Japan Aerospace Exploration Agency (JAXA), was assembled with the aim to develop community consensus on multiple methods for measuring aquatic primary productivity used for satellite validation and model synthesis. A workshop to commence the working group efforts was held December 5–7, 2018, at the University Space Research Association headquarters in Columbia, MD, USA, bringing together 26 active researchers from 16 institutions. In this document, we discuss and develop the workshop findings as they pertain to primary productivity measurements, including the essential issues, nuances, definitions, scales, uncertainties, and ultimately best practices for data collection across multiple methodologies

    Predicting the Electron Requirement for Carbon Fixation in Seas and Oceans

    Get PDF
    Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and 14C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e- (mol C)-1 with a mean of 10.9±6.91 mol e- mol C)-1. Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φe,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φe,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φe,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while light availability was also important in Baltic Sea and shelf waters. The novel Φe,C algorithms provide a major step forward for widespread fluorometry-based NPP estimates and highlight the need for further studying the natural variability of Φe,C to verify and develop algorithms with improved accuracy. © 2013 Lawrenz et al
    corecore