10 research outputs found

    The spread of Helicoverpa armigera (Lepidoptera: Noctuidae) and coexistence with Helicoverpa zea in Southeastern Brazil

    Get PDF
    Helicoverpa armigera, one of the world’s most destructive crop pests, was first documented in Brazil in 2013. Within a few months, this polyphagous insect had spread over the Northeast and Central-West of Brazil, causing great agricultural losses. With several reports of populations resistant to pesticides and Bt crops around the world, there is great concern about the spread of this pest in Brazil. There is confusion about the actual distribution of this species due to the high morphological similarity with the native corn earworm Helicoverpa zea, which may also coexist with H. armigera in the field. Our aims here were (i) to confirm its presence in the State of Minas Gerais, one of the most important agricultural regions in the country; and (ii) to assess the co-occurrence of this pest with the congeneric corn earworm H. zea. Using molecular screening, we confirmed the presence of H. armigera in Bt-crops of soybean and cotton, and non-Bt-crops of soybean, cotton and maize. Mixed infestations of H. armigera with H. zea were found in non-Bt maize (Viçosa, Southeastern Minas Gerais). These results highlight the need for adequate control strategies for H. armigera in Brazil, to deal with its polyphagous feeding habits, high dispersal capacity and possible risks of hybridization with congeneric species

    Recognition of endophytic Trichoderma species by leaf-cutting ants and their potential in a Trojan-horse management strategy

    Get PDF
    Interactions between leaf-cutting ants, their fungal symbiont (Leucoagaricus) and the endophytic fungi within the vegetation they carry into their colonies are still poorly understood. If endophytes antagonistic to Leucoagaricus were found in plant material being carried by these ants, then this might indicate a potential mechanism for plants to defend themselves from leaf-cutter attack. In addition, it could offer possibilities for the management of these important Neotropical pests. Here, we show that, for Atta sexdens rubropilosa, there was a significantly greater incidence of Trichoderma species in the vegetation removed from the nests—and deposited around the entrances—than in that being transported into the nests. In a no-choice test, Trichoderma-infested rice was taken into the nest, with deleterious effects on both the fungal gardens and ant survival. The endophytic ability of selected strains of Trichoderma was also confirmed, following their inoculation and subsequent reisolation from seedlings of eucalyptus. These results indicate that endophytic fungi which pose a threat to ant fungal gardens through their antagonistic traits, such as Trichoderma, have the potential to act as bodyguards of their plant hosts and thus might be employed in a Trojan-horse strategy to mitigate the negative impact of leaf-cutting ants in both agriculture and silviculture in the Neotropics. We posit that the ants would detect and evict such ‘malign’ endophytes—artificially inoculated into vulnerable crops—during the quality-control process within the nest, and, moreover, that the foraging ants may then be deterred from further harvesting of ‘Trichoderma-enriched’ plants

    Presence of Trichoderma in leaf pieces carried or rejected by workers of leaf-cutting ants

    No full text
    Recognition of endophytic Trichoderma mycoparasites by leaf-cutting ants and their potential in a Trojan-horse management strategy - Rejected leaves were considered to be those scattered by the ants above or at the side of the nest entrances. Carried leaves were taken from ants as they were being transported to the nest

    Quality control by leaf-cutting ants: evidence from communities of endophytic fungi in foraged and rejected vegetation

    No full text
    Leaf-cutting ants of the genera Acromyrmex and Atta forage vegetation for incorporation into their mutualistic fungal gardens. However, the presence of certain endophytic fungi in this predominantly leaf-based material could affect the fungal garden and thus the choice of material by the ants. The present study was conducted to document the endophytic fungal communities occurring in the vegetation being transported by workers of Atta laevigata into their nests and to compare this community structure with that of the vegetative material subsequently rejected from the nests. We found considerable diversity in the fungi isolated. Acremonium, Cylindrocladium, Drechslera, Epicoccum, Fusarium, Trichoderma, Ulocladium and two unidentified morphospecies were significantly more common in rejected compared with foraged material, and some of these genera include mycoparasites, which could represent a threat to the fungal gardens. Conversely, Colletotrichum, Pestalotiopsis, Phomopsis, Xylaria and an unidentified morphospecies were more common in carried compared with rejected material. The possibility that ants have a ‘quality-control’ mechanism based on the presence of antagonistic fungal endophytes is discussed, as is the potential use of these fungi as biocontrol agents against Attini pests

    Data from: Recognition of endophytic Trichoderma species by leaf-cutting ants and their potential in a Trojan-horse management strategy

    No full text
    Interactions between leaf-cutting ants, their fungal symbiont (Leucoagaricus) and the endophytic fungi within the vegetation they carry into their colonies are still poorly understood. If endophytes antagonistic to Leucoagaricus were found in plant material being carried by these ants, then this might indicate a potential mechanism for plants to defend themselves from leaf-cutter attack. In addition, it could offer possibilities for the management of these important Neotropical pests. Here, we show that, for Atta sexdens rubropilosa, there was a significantly greater incidence of Trichoderma species in the vegetation removed from the nests—and deposited around the entrances—than in that being transported into the nests. In a no-choice test, Trichoderma-infested rice was taken into the nest, with deleterious effects on both the fungal gardens and ant survival. The endophytic ability of selected strains of Trichoderma was also confirmed, following their inoculation and subsequent reisolation from seedlings of eucalyptus. These results indicate that endophytic fungi which pose a threat to ant fungal gardens through their antagonistic traits, such as Trichoderma, have the potential to act as bodyguards of their plant hosts and thus might be employed in a Trojan-horse strategy to mitigate the negative impact of leaf-cutting ants in both agriculture and silviculture in the Neotropics. We posit that the ants would detect and evict such ‘malign’ endophytes—artificially inoculated into vulnerable crops—during the quality-control process within the nest, and, moreover, that the foraging ants may then be deterred from further harvesting of ‘Trichoderma-enriched’ plants

    Table S1; Table S2 from Recognition of endophytic <i>Trichoderma</i> species by leaf-cutting ants and their potential in a Trojan-horse management strategy

    No full text
    Origins of <i>Trichoderma</i> isolated from leaves cut by <i>Atta sexdens rubropilosa</i> in Viçosa-MG/Brazil. Rejected leaves were considered to be those scattered by the ants above or at the side of the nest entrances. Carried leaves were taken from ants as they were being transported to the nest.; Estimates of evolutionary divergence (p-distance) over sequence pairs between species in the <i>T. harzianum</i> complex. The analyss is based on number of base differences per site from averaging over the entire elongation factor (TEF1) sequence. The analysis involved 184 nucleotide sequences. All ambiguous positions were removed for each sequence pair. There were a total of 486 positions in the final dataset
    corecore