396 research outputs found

    Bochner transforms, perturbations and amoebae of holomorphic almost periodic mappings in tube domains

    Full text link
    We give an alternative representation of the closure of the Bochner transform of a holomorphic almost periodic mapping in a tube domain. For such mappings we introduce a new notion of amoeba and we show that, for mappings which are regular in the sense of Ronkin, this new notion agrees with Favorov's one. We prove that the amoeba complement of a regular holomorphic almost periodic mapping, defined on Cn and taking its values in Cm+1, is a Henriques m-convex subset of Rn. Finally, we compare some different notions of regularity

    Combined Effects of Age and Comorbidities on Electrocardiographic Parameters in a Large Non-Selected Population

    Get PDF
    Background: Previous studies have evaluated average electrocardiographic (ECG) values in healthy subjects or specific subpopulations. However, none have evaluated ECG average values in not selected populations, so we examined ECG changes with respect to age and sex in a large primary population. Methods: From digitized ECG stored from 2008 to 2021 in the Modena province, 130,471 patients were enrolled. Heart rate, P, QRS and T wave axis, P, QRS and T wave duration, PR interval, QTc, and frontal QRS-T angle were evaluated. Results: All ECG parameters showed a dependence on age, but only some of them with a straight-line correlation: QRS axis (p < 0.001, R2 = 0.991, r = 0.996), PR interval (p < 0.001, R2 = 0.978, r = 0.989), QTc (p < 0.001, R2 = 0.935, r = 0.967), and, in over 51.5 years old, QRS-T angle (p < 0.001, R2 = 0.979, r = 0.956). Differences between females and males and in different clinical settings were observed. Conclusions: ECG changes with ageing are explainable by intrinsic modifications of the heart and thorax and with the appearance of cardiovascular diseases and comorbidities. Age-related reference values were computed and applicable in clinical practice. Significant deviations from mean values and from Z-scores should be investigated

    The LPS O-antigen in photosynthetic Bradyrhizobium strains is dispensable for the establishment of a successful symbiosis with Aeschynomene legumes

    Get PDF
    The photosynthetic bradyrhizobia are able to use a Nod-factor independent process to induce nitrogen-fixing nodules on some semi-aquatic Aeschynomene species. These bacteria display a unique LPS O-antigen composed of a new sugar, the bradyrhizose that is regarded as a key symbiotic factor due to its non-immunogenic character. In this study, to check this hypothesis, we isolated mutants affected in the O-antigen synthesis by screening a transposon mutant library of the ORS285 strain for clones altered in colony morphology. Over the 10,000 mutants screened, five were selected and found to be mutated in two genes, rfaL, encoding for a putative O-antigen ligase and gdh encoding for a putative dTDP-glucose 4,6-dehydratase. Biochemical analysis confirmed that the LPS of these mutants completely lack the O-antigen region. However, no effect of the mutations could be detected on the symbiotic properties of the mutants indicating that the O-antigen region of photosynthetic Bradyrhizobium strains is not required for the establishment of symbiosis with Aeschynomene

    Technology-based Product-services for Supporting Frugal Innovation

    Get PDF
    In recent years, European manufacturing companies are gradually applying innovative PSS (Product Service Systems), as strategic opportunity for differentiating from competitors, offering an integrated bundle of products and services, targeted on specific needs of different customers. At the same time, frugal innovation has also surged as a new business concept based upon an intelligent use of resources to fulfill region-dependent customers' needs. Both approaches bring forth rethinking of established business models, which in turn asks for an in-depth analysis of the implications on the company organization and infrastructure, at supply chain and plant levels, urging towards manufacturing networks and reconfigurable assembly lines. This paper presents a formalized framework to support product-service design and the related business model characterization, in the context of frugal innovation. The methodology is applied to three real industrial scenarios respectively in the aeronautics, the domestic appliances and the machinery industry, which are analyzed within the framework of the H2020 European funded project 'ProRegio'

    Burkholderia pseudomallei Capsular Polysaccharide Recognition by a Monoclonal Antibody Reveals Key Details toward a Biodefense Vaccine and Diagnostics against Melioidosis.

    Get PDF
    Burkholderia pseudomallei is the bacterium responsible for melioidosis, an infectious disease with high mortality rates. Since melioidosis is a significant public health concern in endemic regions and the organism is currently classified as a potential biothreat agent, the development of effective vaccines and rapid diagnostics is a priority. The capsular polysaccharide (CPS) expressed by B. pseudomallei is a highly conserved virulence factor and a protective antigen. Because of this, CPS is considered an attractive antigen for use in the development of both vaccines and diagnostics. In the present study, we describe the interactions of CPS with the murine monoclonal antibody (mAb) 4C4 using a multidisciplinary approach including organic synthesis, molecular biology techniques, surface plasmon resonance, and nuclear magnetic spectroscopy. Using these methods, we determined the mode of binding between mAb 4C4 and native CPS or ad hoc synthesized capsular polysaccharide fragments. Interestingly, we demonstrated that the O-acetyl moiety of CPS is essential for the interaction of the CPS epitope with mAb 4C4. Collectively, our results provide important insights into the structural features of B. pseudomallei CPS that enable antibody recognition that may help the rational design of CPS-based vaccine candidates. In addition, our findings confirm that the mAb 4C4 is suitable for use in an antibody-based detection assay for diagnosis of B. pseudomallei infections

    Analysis of Synthetic Monodisperse Polysaccharides by Wide Mass Range Ultrahigh-Resolution MALDI Mass Spectrometry

    Get PDF
    Carbohydrates, such as oligo- and polysaccharides, are highly abundant biopolymers that are involved in numerous processes. The study of their structure and functions is commonly based on a material that is isolated from complex natural sources. However, a more precise analysis requires pure compounds with well-defined structures that can be obtained from chemical or enzymatic syntheses. Novel synthetic strategies have increased the accessibility of larger monodisperse polysaccharides, posing a challenge to the analytical methods used for their molecular characterization. Here, we present wide mass range ultrahigh-resolution matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) as a powerful platform for the analysis of synthetic oligo- and polysaccharides. Synthetic carbohydrates 16-, 64-, 100-, and 151-mers were mass analyzed and characterized by MALDI in-source decay FT-ICR MS. Detection of fragment ions generated from glycosidic bond cleavage (or cross-ring cleavage) provided information of the monosaccharide content and the linkage type, allowing for the corroboration of the carbohydrate compositions and structures
    corecore