150 research outputs found

    Identification of functional apple scab resistance gene promoters

    Get PDF
    Apple scab (Venturia inaequalis) is one of the most damaging diseases affecting commercial apple production. Some wild Malus species possess resistance against apple scab. One gene, HcrVf2, from a cluster of three genes derived from the wild apple Malus floribunda clone 821, has recently been shown to confer resistance to apple scab when transferred into a scab-susceptible apple variety. For this proof-of-function experiment, the use of the 35S promoter from Cauliflower mosaic virus was reliable and appropriate. However, in order to reduce the amount of non-plant DNA in genetically modified apple to a minimum, with the aim of increasing genetically modified organism acceptability, these genes would ideally be regulated by their own promoters. In this study, sequences from the promoter region of the three members of the HcrVf gene family were compared. Promoter constructs containing progressive 5′ deletions were prepared and used for functional analyses. Qualitative assessment confirmed promoter activity in apple. Quantitative promoter comparison was carried out in tobacco (Nicotiana glutinosa) and led to the identification of several promoter regions with different strengths from a basal level to half the strength of the 35S promoter from Cauliflower mosaic viru

    HFST—Framework for Compiling and Applying Morphologies

    Get PDF
    HFST–Helsinki Finite-State Technology ( hfst.sf.net ) is a framework for compiling and applying linguistic descriptions with finite-state methods. HFST currently connects some of the most important finite-state tools for creating morphologies and spellers into one open-source platform and supports extending and improving the descriptions with weights to accommodate the modeling of statistical information. HFST offers a path from language descriptions to efficient language applications in key environments and operating systems. HFST also provides an opportunity to exchange transducers between different software providers in order to get the best out of each finite-state library.Peer reviewe

    Microsatellite markers spanning the apple ( Malus x domestica Borkh.) genome

    Get PDF
    A new set of 148 apple microsatellite markers has been developed and mapped on the apple reference linkage map Fiesta x Discovery. One-hundred and seventeen markers were developed from genomic libraries enriched with the repeats GA, GT, AAG, AAC and ATC; 31 were developed from EST sequences. Markers derived from sequences containing dinucleotide repeats were generally more polymorphic than sequences containing trinucleotide repeats. Additional eight SSRs from published apple, pear, and Sorbus torminalis SSRs, whose position on the apple genome was unknown, have also been mapped. The transferability of SSRs across Maloideae species resulted in being efficient with 41% of the markers successfully transferred. For all 156 SSRs, the primer sequences, repeat type, map position, and quality of the amplification products are reported. Also presented are allele sizes, ranges, and number of SSRs found in a set of nine cultivars. All this information and those of the previous CH-SSR series can be searched at the apple SSR database ( http://www.hidras.unimi.it ) to which updates and comments can be added. A large number of apple ESTs containing SSR repeats are available and should be used for the development of new apple SSRs. The apple SSR database is also meant to become an international platform for coordinating this effort. The increased coverage of the apple genome with SSRs allowed the selection of a set of 86 reliable, highly polymorphic, and overall the apple genome well-scattered SSRs. These SSRs cover about 85% of the genome with an average distance of one marker per 15c

    Identification and validation of a QTL influencing bitter pit symptoms in apple (Malus x domestica)

    Get PDF
    Bitter pit is one of the most economically important physiological disorders affecting apple fruit production, causing soft discrete pitting of the cortical flesh of the apple fruits which renders them unmarketable. The disorder is heritable; however, the environment and cultural practices play a major role in expression of symptoms. Bitter pit has been shown to be controllable to a certain extent using calcium sprays and dips; however, their use does not entirely prevent the incidence of the disorder. Previously, bitter pit has been shown to be controlled by two dominant genes, and markers on linkage group 16 of the apple genome were identified that were significantly associated with the expression of bitter pit symptoms in a genome-wide association study. In this investigation, we identified a major QTL for bitter pit defined by two microsatellite (SSR) markers. The association of the SSRs with the bitter pit locus, and their ability to predict severe symptom expression, was confirmed through screening of individuals with stable phenotypic expression from an additional mapping progeny. The data generated in this current study suggest a two gene model could account for the control of bitter pit symptom expression; however, only one of the loci was detectable, most likely due to dominance of alleles carried by both parents of the mapping progeny used. The SSR markers identified are cost-effective, robust and multi-allelic and thus should prove useful for the identification of seedlings with resistance to bitter pit using marker-assisted selection in apple breeding programs

    Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome

    Get PDF
    A total of 355 simple sequence repeat (SSR) markers were developed, based on expressed sequence tag (EST) and bacterial artificial chromosome (BAC)-end sequence databases, and successfully used to construct an SSR-based genetic linkage map of the apple. The consensus linkage map spanned 1143 cM, with an average density of 2.5 cM per marker. Newly developed SSR markers along with 279 SSR markers previously published by the HiDRAS project were further used to integrate physical and genetic maps of the apple using a PCR-based BAC library screening approach. A total of 470 contigs were unambiguously anchored onto all 17 linkage groups of the apple genome, and 158 contigs contained two or more molecular markers. The genetically mapped contigs spanned ∼421 Mb in cumulative physical length, representing 60.0% of the genome. The sizes of anchored contigs ranged from 97 kb to 4.0 Mb, with an average of 995 kb. The average physical length of anchored contigs on each linkage group was ∼24.8 Mb, ranging from 17.0 Mb to 37.73 Mb. Using BAC DNA as templates, PCR screening of the BAC library amplified fragments of highly homologous sequences from homoeologous chromosomes. Upon integrating physical and genetic maps of the apple, the presence of not only homoeologous chromosome pairs, but also of multiple locus markers mapped to adjacent sites on the same chromosome was detected. These findings demonstrated the presence of both genome-wide and segmental duplications in the apple genome and provided further insights into the complex polyploid ancestral origin of the apple

    Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples

    Get PDF
    Apple scab resistance genes, HcrVf1 and HcrVf2, were isolated including their native promoter, coding and terminator sequences. Two fragment lengths (short and long) of the native gene promoters and the strong apple rubisco gene promoter (PMdRbc) were used for both HcrVf genes to test their effect on expression and phenotype. The scab susceptible cultivar ‘Gala’ was used for plant transformations and after selection of transformants, they were micrografted onto apple seedling rootstocks for scab disease tests. Apple transformants were also tested for HcrVf expression by quantitative RT-PCR (qRT-PCR). For HcrVf1 the long native promoter gave significantly higher expression that the short one; in case of HcrVf2 the difference between the two was not significant. The apple rubisco gene promoter proved to give the highest expression of both HcrVf1 and HcrVf2. The top four expanding leaves were used initially for inoculation with monoconidial isolate EU-B05 which belongs to race 1 of V. inaequalis. Later six other V. inaequalis isolates were used to study the resistance spectra of the individual HcrVf genes. The scab disease assays showed that HcrVf1 did not give resistance against any of the isolates tested regardless of the expression level. The HcrVf2 gene appeared to be the only functional gene for resistance against Vf avirulent isolates of V. inaequalis. HcrVf2 did not provide any resistance to Vf virulent strains, even not in case of overexpression. In conclusion, transformants carrying the apple-derived HcrVf2 gene in a cisgenic as well as in an intragenic configuration were able to reach scab resistance levels comparable to the Vf resistant control cultivar obtained by classical breeding, cv. ‘Santana’

    A FRUITFULL-like gene is associated with genetic variation for fruit flesh firmness in apple (Malus domestica Borkh.)

    Get PDF
    The FRUITFULL (FUL) and SHATTERPROOF (SHP) genes are involved in regulating fruit development and dehiscence in Arabidopsis. We tested the hypothesis that this class of genes are also involved in regulating the development of fleshy fruits, by exploring genetic and phenotypic variation within the apple (Malus domestica) gene pool. We isolated and characterised the genomic sequences of two candidate orthologous FUL-like genes, MdMADS2.1 and MdMADS2.2. These were mapped using the reference population ‘Prima x Fiesta’ to loci on Malus linkage groups LG14 and LG06, respectively. An additional MADS-box gene, MdMADS14, shares high amino acid identity with the Arabidopsis SHATTERPROOF1/2 genes and was mapped to Malus linkage group LG09. Association analysis between quantitative fruit flesh firmness estimates of ‘Prima x Fiesta’ progeny and the MdMADS2.1, MdMADS2.2 and MdMADS14 loci was carried out using a mixed model analysis of variance. This revealed a significant association (P < 0.01) between MdMADS2.1 and fruit flesh firmness. Further evidence for the association between MdMADS2.1 and fruit flesh firmness was obtained using a case–control population-based genetic association approach. For this, a polymorphic repeat, (AT)n, in the 3′ UTR of MdMADS2.1 was used as a locus-specific marker to screen 168 apple accessions for which historical assessments of fruit texture attributes were available. This analysis revealed a significant association between the MdMADS2.1 and fruit flesh firmness at both allelic (χ 2 = 34, df = 9, P < 0.001) and genotypic (χ 2 = 57, df = 32, P < 0.01) levels
    corecore