42 research outputs found

    Heparan sulphate inhibition of cell proliferation induced by TGFβ and PDGF

    Get PDF
    The effect of glycosaminoglycans (GAGs) on the proliferation of smooth muscle cells (SMC) and fibroblasts was assessed by culturing cells with or without GAGs. Porcine heparan sulphate (HS) inhibited proliferation in a dose dependent manner. At 167 μg/ml of HS this reached 88% and 72% inhibition of SMC and fibroblast growth, respectively. Pig and beef mucosal heparins also blocked proliferation, but to a lesser extent. In contrast, beef lung heparin, chondroitin sulphate, and dermatan sulphate failed to block growth factor induced proliferation. Continuous presence of HS was not required, suggesting that the inhibitory effects resulted from a direct effect on the cell rather than an interaction of the GAG with growth factors. The mechanism by which GAGs inhibit proliferation will be addressed in future studies

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Overview of the instrumentation for the Dark Energy Spectroscopic Instrument

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3.°2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360–980 nm with a spectral resolution that ranges from 2000–5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0.″1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 × 10−17 erg s−1 cm−2 in 1000 s for galaxies at z = 1.4–1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned

    DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest

    No full text
    International audienceWe present the measurement of Baryon Acoustic Oscillations (BAO) from the Lyman-α\alpha (Lyα\alpha) forest of high-redshift quasars with the first-year dataset of the Dark Energy Spectroscopic Instrument (DESI). Our analysis uses over 420000420\,000 Lyα\alpha forest spectra and their correlation with the spatial distribution of more than 700000700\,000 quasars. An essential facet of this work is the development of a new analysis methodology on a blinded dataset. We conducted rigorous tests using synthetic data to ensure the reliability of our methodology and findings before unblinding. Additionally, we conducted multiple data splits to assess the consistency of the results and scrutinized various analysis approaches to confirm their robustness. For a given value of the sound horizon (rdr_d), we measure the expansion at zeff=2.33z_{\rm eff}=2.33 with 2% precision, H(zeff)=(239.2±4.8)(147.09 Mpc/rd)H(z_{\rm eff}) = (239.2 \pm 4.8) (147.09~{\rm Mpc} /r_d) km/s/Mpc. Similarly, we present a 2.4% measurement of the transverse comoving distance to the same redshift, DM(zeff)=(5.84±0.14)(rd/147.09 Mpc)D_M(z_{\rm eff}) = (5.84 \pm 0.14) (r_d/147.09~{\rm Mpc}) Gpc. Together with other DESI BAO measurements at lower redshifts, these results are used in a companion paper to constrain cosmological parameters

    DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest

    No full text
    International audienceWe present the measurement of Baryon Acoustic Oscillations (BAO) from the Lyman-α\alpha (Lyα\alpha) forest of high-redshift quasars with the first-year dataset of the Dark Energy Spectroscopic Instrument (DESI). Our analysis uses over 420000420\,000 Lyα\alpha forest spectra and their correlation with the spatial distribution of more than 700000700\,000 quasars. An essential facet of this work is the development of a new analysis methodology on a blinded dataset. We conducted rigorous tests using synthetic data to ensure the reliability of our methodology and findings before unblinding. Additionally, we conducted multiple data splits to assess the consistency of the results and scrutinized various analysis approaches to confirm their robustness. For a given value of the sound horizon (rdr_d), we measure the expansion at zeff=2.33z_{\rm eff}=2.33 with 2% precision, H(zeff)=(239.2±4.8)(147.09 Mpc/rd)H(z_{\rm eff}) = (239.2 \pm 4.8) (147.09~{\rm Mpc} /r_d) km/s/Mpc. Similarly, we present a 2.4% measurement of the transverse comoving distance to the same redshift, DM(zeff)=(5.84±0.14)(rd/147.09 Mpc)D_M(z_{\rm eff}) = (5.84 \pm 0.14) (r_d/147.09~{\rm Mpc}) Gpc. Together with other DESI BAO measurements at lower redshifts, these results are used in a companion paper to constrain cosmological parameters

    DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars

    No full text
    International audienceWe present the DESI 2024 galaxy and quasar baryon acoustic oscillations (BAO) measurements using over 5.7 million unique galaxy and quasar redshifts in the range 0.1<z<2.1. Divided by tracer type, we utilize 300,017 galaxies from the magnitude-limited Bright Galaxy Survey with 0.1<z<0.4, 2,138,600 Luminous Red Galaxies with 0.4<z<1.1, 2,432,022 Emission Line Galaxies with 0.8<z<1.6, and 856,652 quasars with 0.8<z<2.1, over a ~7,500 square degree footprint. The analysis was blinded at the catalog-level to avoid confirmation bias. All fiducial choices of the BAO fitting and reconstruction methodology, as well as the size of the systematic errors, were determined on the basis of the tests with mock catalogs and the blinded data catalogs. We present several improvements to the BAO analysis pipeline, including enhancing the BAO fitting and reconstruction methods in a more physically-motivated direction, and also present results using combinations of tracers. We present a re-analysis of SDSS BOSS and eBOSS results applying the improved DESI methodology and find scatter consistent with the level of the quoted SDSS theoretical systematic uncertainties. With the total effective survey volume of ~ 18 Gpc3^3, the combined precision of the BAO measurements across the six different redshift bins is ~0.52%, marking a 1.2-fold improvement over the previous state-of-the-art results using only first-year data. We detect the BAO in all of these six redshift bins. The highest significance of BAO detection is 9.1σ9.1\sigma at the effective redshift of 0.93, with a constraint of 0.86% placed on the BAO scale. We find our measurements are systematically larger than the prediction of Planck-2018 LCDM model at z<0.8. We translate the results into transverse comoving distance and radial Hubble distance measurements, which are used to constrain cosmological models in our companion paper [abridged]
    corecore