234 research outputs found

    Hydrodynamic Coupling of Particle Inclusions Embedded in Curved Lipid Bilayer Membranes

    Full text link
    We develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and inter-monolayer slip. For general investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.Comment: 32 pages, double-column format, 15 figure

    Dynamic Implicit-Solvent Coarse-Grained Models of Lipid Bilayer Membranes : Fluctuating Hydrodynamics Thermostat

    Full text link
    Many coarse-grained models have been developed for equilibrium studies of lipid bilayer membranes. To achieve in simulations access to length-scales and time-scales difficult to attain in fully atomistic molecular dynamics, these coarse-grained models provide a reduced description of the molecular degrees of freedom and often remove entirely representation of the solvent degrees of freedom. In such implicit-solvent models the solvent contributions are treated through effective interaction terms within an effective potential for the free energy. For investigations of kinetics, Langevin dynamics is often used. However, for many dynamical processes within bilayers this approach is insufficient since it neglects important correlations and dynamical contributions that are missing as a result of the momentum transfer that would have occurred through the solvent. To address this issue, we introduce a new thermostat based on fluctuating hydrodynamics for dynamic simulations of implicit-solvent coarse-grained models. Our approach couples the coarse-grained degrees of freedom to a stochastic continuum field that accounts for both the solvent hydrodynamics and thermal fluctuations. We show our approach captures important correlations in the dynamics of lipid bilayers that are missing in simulations performed using conventional Langevin dynamics. For both planar bilayer sheets and bilayer vesicles, we investigate the diffusivity of lipids, spatial correlations, and lipid flow within the bilayer. The presented fluctuating hydrodynamics approaches provide a promising way to extend implicit-solvent coarse-grained lipid models for use in studies of dynamical processes within bilayers

    The distribution of a germline methylation marker suggests a regional mechanism of LINE-1 silencing by the piRNA-PIWI system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A defense system against transposon activity in the human germline based on PIWI proteins and piRNA has recently been discovered. It represses the activity of LINE-1 elements via DNA methylation by a largely unknown mechanism. Based on the dispersed distribution of clusters of piRNA genes in a strand-specific manner on all human chromosomes, we hypothesized that this system might work preferentially on local and proximal sequences. We tested this hypothesis with a methylation-associated SNP (mSNP) marker which is based on the density of C-T transitions in CpG dinucleotides as a surrogate marker for germline methylation.</p> <p>Results</p> <p>We found significantly higher density of mSNPs flanking piRNA clusters in the human genome for flank sizes of 1-16 Mb. A dose-response relationship between number of piRNA genes and mSNP density was found for up to 16 Mb of flanking sequences. The chromosomal density of hypermethylated LINE-1 elements had a significant positive correlation with the chromosomal density of piRNA genes (<it>r </it>= 0.41, <it>P </it>= 0.05<it>)</it>. Genome windows of 1-16 Mb containing piRNA clusters had significantly more hypermethylated LINE-1 elements than windows not containing piRNA clusters. Finally, the minimum distance to the next piRNA cluster was significantly shorter for hypermethylated LINE-1 compared to normally methylated elements (14.4 Mb vs 16.1 Mb).</p> <p>Conclusions</p> <p>Our observations support our hypothesis that the piRNA-PIWI system preferentially methylates sequences in close proximity to the piRNA clusters and perhaps physically adjacent sequences on other chromosomes. Furthermore they suggest that this proximity effect extends up to 16 Mb. This could be due to an unknown localization signal, transcription of piRNA genes near the nuclear membrane or the presence of an unknown RNA molecule that spreads across the chromosome and targets the methylation directed by the piRNA-PIWI complex. Our data suggest a region specific molecular mechanism which can be sought experimentally.</p

    How primary healthcare in Iceland swiftly changed its strategy in response to the COVID-19 pandemic

    Get PDF
    Funding Information: Contributors All authors contributed to the planning, conduct and reporting of the study. ELS, JSJ, MOT, HH, KL worked on acquisition of the data. ELS, ABB and JSJ drafted the manuscript with input from MOT, HH, KL and JAS which was critically reviewed by all the authors. HH performed the statistical analysis. ELS, ABB, JSJ, MOT, HH, KL, JAS read and approved the final version of the manuscript. Funding This research was supported by the Research Fund of the Icelandic College of Family Physicians. Publisher Copyright: ©Objective To describe how the primary healthcare (PHC) in Iceland changed its strategy to handle the COVID-19 pandemic. Design Descriptive observational study. Setting Reykjavik, the capital of Iceland. Population The Reykjavik area has a total of 233 000 inhabitants. Main outcome measures The number and the mode of consultations carried out. Drug prescriptions and changes in the 10 most common diagnoses made in PHC. Laboratory tests including COVID-19 tests. Average numbers in March and April 2020 compared with the same months in 2018 and 2019. Results Pragmatic strategies and new tasks were rapidly applied to the clinical work to meet the foreseen healthcare needs caused by the pandemic. The number of daytime consultations increased by 35% or from 780 to 1051/1000 inhabitants (p<0.001) during the study period. Telephone and web-based consultations increased by 127% (p<0.001). The same tendency was observed in out-of-hours services. The number of consultations in maternity and well-child care decreased only by 4% (p=0.003). Changes were seen in the 10 most common diagnoses. Most noteworthy, apart from a high number of COVID-19 suspected disease, was that immunisation, depression, hypothyroidism and lumbago were not among the top 10 diagnoses during the epidemic period. The number of drug prescriptions increased by 10.3% (from 494 to 545 per 1000 inhabitants, p<0.001). The number of prescriptions from telephone and web-based consultations rose by 55.6%. No changes were observed in antibiotics prescriptions. Conclusions As the first point of contact in the COVID-19 pandemic, the PHC in Iceland managed to change its strategy swiftly while preserving traditional maternity and well-child care, indicating a very solid PHC with substantial flexibility in its organisation.Peer reviewe

    CpG promoter methylation of the ALKBH3 alkylation repair gene in breast cancer.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesDNA repair of alkylation damage is defective in various cancers. This occurs through somatically acquired inactivation of the MGMT gene in various cancer types, including breast cancers. In addition to MGMT, the two E. coli AlkB homologs ALKBH2 and ALKBH3 have also been linked to direct reversal of alkylation damage. However, it is currently unknown whether ALKBH2 or ALKBH3 are found inactivated in cancer.Methylome datasets (GSE52865, GSE20713, GSE69914), available through Omnibus, were used to determine whether ALKBH2 or ALKBH3 are found inactivated by CpG promoter methylation. TCGA dataset enabled us to then assess the impact of CpG promoter methylation on mRNA expression for both ALKBH2 and ALKBH3. DNA methylation analysis for the ALKBH3 promoter region was carried out by pyrosequencing (PyroMark Q24) in 265 primary breast tumours and 30 proximal normal breast tissue samples along with 8 breast-derived cell lines. ALKBH3 mRNA and protein expression were analysed in cell lines using RT-PCR and Western blotting, respectively. DNA alkylation damage assay was carried out in cell lines based on immunofluorescence and confocal imaging. Data on clinical parameters and survival outcomes in patients were obtained and assessed in relation to ALKBH3 promoter methylation.The ALKBH3 gene, but not ALKBH2, undergoes CpG promoter methylation and transcriptional silencing in breast cancer. We developed a quantitative alkylation DNA damage assay based on immunofluorescence and confocal imaging revealing higher levels of alkylation damage in association with epigenetic inactivation of the ALKBH3 gene (P = 0.029). In our cohort of 265 primary breast cancer, we found 72 cases showing aberrantly high CpG promoter methylation over the ALKBH3 promoter (27%; 72 out of 265). We further show that increasingly higher degree of ALKBH3 promoter methylation is associated with reduced breast-cancer specific survival times in patients. In this analysis, ALKBH3 promoter methylation at >20% CpG methylation was found to be statistically significantly associated with reduced survival (HR = 2.3; P = 0.012). By thresholding at the clinically relevant CpG methylation level (>20%), we find the incidence of ALKBH3 promoter methylation to be 5% (13 out of 265).ALKBH3 is a novel addition to the catalogue of DNA repair genes found inactivated in breast cancer. Our results underscore a link between defective alkylation repair and breast cancer which, additionally, is found in association with poor disease outcome.Icelandic Centre for Researc

    CpG promoter hypo-methylation and up-regulation of microRNA-190b in hormone receptor-positive breast cancer

    Get PDF
    Publisher's version (útgefin grein)Estrogen receptor-positive breast cancer is subdivided into subtypes LuminalA and LuminalB, based on different expression patterns. MicroRNA-190b has been reported to be up-regulated in estrogen receptor-positive breast cancers. In this study we aimed to investigate the role of CpG promoter methylation in regulating miR-190b expression and its impact on clinical presentation and prognosis. DNA methylation analysis for the promotor of microRNA-190b was performed by pyrosequencing 549 primary breast tumors, of which 62 were carriers of the BRCA2999del5 founder mutation, 71 proximal normal breast samples and 16 breast derived cell lines. MicroRNA-190b expression was analysed in 67 primary breast tumors, 14 paired normal breast samples and 16 breast derived cell lines. Tissue microarrays (TMAs) were available for ER (n = 436), PR (n = 436), HER-2 (N = 258) and Ki67 (n = 248). MiR-190b had reduced promoter methylation in estrogen receptor-positive breast cancers (P = 1.02e–12, Median values: ER+ 24.3, ER– 38.26) and miR-190b’s expression was up-regulated in a correlative manner (P = 1.83e–06, Spearman’s rho –0.62). Through breast cancer specific survival analysis, we demonstrated that LuminalA patients exhibiting miR-190b hypo-methylation had better survival than other patients (P = 0.034, HR = 0.29, 95% CI 0.09-0.91). We, furthermore, demonstrated that miR-190b hypo-methylation occurs less frequently in ER+ tumors from BRCA2999del5 mutation carriers than in non-mutated individuals (P = 0.038, Χ2 = 4.32, n = 335). Our results suggest that upregulation of miR-190b may occur through loss of promoter DNA methylation during the development of estrogen-receptor (ER) positive breast cancers, and that miR-190b hypo-methylation leads to increased breast cancer specific survival within the LuminalA- subtype but not LuminalB.This work was funded b y Gongum Saman (EAF), The Icelandic cancer society (TG), and Icelandic Centre for Research RANNIS grant ID # 141395Peer reviewe

    Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesLynch syndrome, caused by germline mutations in the mismatch repair genes, is associated with increased cancer risk. Here using a large whole-genome sequencing data bank, cancer registry and colorectal tumour bank we determine the prevalence of Lynch syndrome, associated cancer risks and pathogenicity of several variants in the Icelandic population. We use colorectal cancer samples from 1,182 patients diagnosed between 2000-2009. One-hundred and thirty-two (11.2%) tumours are mismatch repair deficient per immunohistochemistry. Twenty-one (1.8%) have Lynch syndrome while 106 (9.0%) have somatic hypermethylation or mutations in the mismatch repair genes. The population prevalence of Lynch syndrome is 0.442%. We discover a translocation disrupting MLH1 and three mutations in MSH6 and PMS2 that increase endometrial, colorectal, brain and ovarian cancer risk. We find thirteen mismatch repair variants of uncertain significance that are not associated with cancer risk. We find that founder mutations in MSH6 and PMS2 prevail in Iceland unlike most other populations.Ohio State University (OSU) Comprehensive Cancer Center OSU Colorectal Cancer Research fund Obrine-Weaver Fund Pelotonia Fellowship Award deCODE genetic

    Sequence variant at 4q25 near PITX2 associates with appendicitis.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesAppendicitis is one of the most common conditions requiring acute surgery and can pose a threat to the lives of affected individuals. We performed a genome-wide association study of appendicitis in 7,276 Icelandic and 1,139 Dutch cases and large groups of controls. In a combined analysis of the Icelandic and Dutch data, we detected a single signal represented by an intergenic variant rs2129979 [G] close to the gene PITX2 associating with increased risk of appendicitis (OR = 1.15, P = 1.8 × 10(-11)). We only observe the association in patients diagnosed in adulthood. The marker is close to, but distinct from, a set of markers reported to associate with atrial fibrillation, which have been linked to PITX2. PITX2 has been implicated in determination of right-left symmetry during development. Anomalies in organ arrangement have been linked to increased prevalence of gastrointestinal and intra-abdominal complications, which may explain the effect of rs2129979 on appendicitis risk

    A descriptive study of the surge response and outcomes of ICU patients with COVID-19 during first wave in Nordic countries

    Get PDF
    Abstract Background We sought to provide a description of surge response strategies and characteristics, clinical management and outcomes of patients with severe COVID-19 in the intensive care unit (ICU) during the first wave of the pandemic in Denmark, Finland, Iceland, Norway and Sweden. Methods Representatives from the national ICU registries for each of the five countries provided clinical data and a description of the strategies to allocate ICU resources and increase the ICU capacity during the pandemic. All adult patients admitted to the ICU for COVID-19 disease during the first wave of COVID-19 were included. The clinical characteristics, ICU management and outcomes of individual countries were described with descriptive statistics. Results Most countries more than doubled their ICU capacity during the pandemic. For patients positive for SARS-CoV-2, the ratio of requiring ICU admission for COVID-19 varied substantially (1.6-6.7%). Apart from age (proportion of patients aged 65 years or over between 29-62%), baseline characteristics, chronic comorbidity burden and acute presentations of COVID-19 disease were similar among the five countries. While utilization of invasive mechanical ventilation was high (59-85%) in all countries, the proportion of patients receiving renal replacement therapy (7-26%) and various experimental therapies for COVID-19 disease varied substantially (e.g. use of hydroxychloroquine 0-85%). Crude ICU mortality ranged from 11% to 33%. Conclusion There was substantial variability in the critical care response in Nordic ICUs to the first wave of COVID-19 pandemic, including usage of experimental medications. While ICU mortality was low in all countries, the observed variability warrants further attention.Peer reviewe

    Azithromycin has lung barrier protective effects in a cell model mimicking ventilator-induced lung injury.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadAzithromycin (AZM) is a broad-spectrum antibiotic widely used to treat infections. AZM also has been shown to have anti-inflammatory and immunomodulatory functions unrelated to its antibacterial activity that contribute to the effectiveness of this drug in chronic respiratory diseases. The mechanisms behind these beneficial effects are not yet fully elucidated. We have previously shown that AZM enhances barrier integrity of bronchial epithelial cells and directs them towards epidermal differentiation. In this study, we analyzed the effect of AZM pre-treatment of human bronchial and alveolar derived cell lines on mechanical stress in a cyclical pressure air-liquid interface device (CPAD) that models the disruption of the epithelial barrier with increased inflammatory response in lung tissue, which is associated with ventilator-induced lung injury (VILI). Immunostaining and electron microscopy showed that barrier integrity of the epithelium was compromised by cyclically stressing the cells but maintained when cells had been pre-treated with AZM. Lamellar body formation was revealed in AZM pre-treated cells, possibly further supporting the barrier-enhancing effects. RNA sequencing showed that the inflammatory response was attenuated by AZM treatment before cyclical stress. YKL-40, an emerging inflammatory marker, increased both due to cyclical stress and upon AZM treatment. These data confirm the usefulness of the CPAD to model ventilator-induced lung injury and suggest that AZM has barrier protective and immunomodulatory effects, attenuating the inflammatory response during mechanical stress, and might therefore be lung protective during mechanical ventilation. The model could be used to assess further drug candidates that influence barrier integrity and modulate inflammatory response. Keywords: YKL-40; airway epithelium; azithromycin; immunomodulation; ventilator-induced lung injury.Icelandic Research Council Landspitali University Hospital science fun
    corecore