27 research outputs found

    Vulnerability of tropical forest ecosystems and forest dependent communities to droughts

    Get PDF
    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr−1 compared to sand at 1739 mm yr−1 and clay at 1771 mm yr−1. Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800–3000 mm yr−1) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation (>3500 mm) levels. By combining data on the ratios of precipitation to the amount of biomass produced in a year with how much less precipitation input occurs during a drought year, it is possible to estimate whether productivity levels are sufficient to support forest growth and forest dependent communities following a drought. In this study, the ratios of annual precipitation inputs required to produce 1 Mg ha−1 yr−1 biomass by soil texture class varied across the three soil textural classes. By using a conservative estimate of 20% of productivity collected or harvested by people and 30% precipitation reduction level as triggering a drought, it was possible to estimate a potential loss of annual productivity due to a drought. In this study, the total NPP unavailable due to drought and harvest by forest dependent communities per year was 10.2 Mg ha−1 yr−1 for the sandy textured soils (64% of NPP still available), 8.4 Mg ha−1 yr−1 for the sandy loam textured soils (60% available) and 12.7 Mg ha−1 yr−1 for the clay textured soils (29% available). Forests growing on clay textured soils would be most vulnerable to drought triggered reductions in productivity so NPP levels would be inadequate to maintain ecosystem functions and would potentially cause a forest-to-savanna shift. Further, these forests would not be able to provide sufficient NPP to satisfy the requirements of forest dependent communities. By predicting the productivity responses of different tropical forest ecosystems to changes in precipitation patterns coupled with edaphic data, it could be possible to spatially identify where tropical forests are most vulnerable to climate change impacts and where mitigation efforts should be concentrated

    Sequences From First Settlers Reveal Rapid Evolution in Icelandic mtDNA Pool

    Get PDF
    A major task in human genetics is to understand the nature of the evolutionary processes that have shaped the gene pools of contemporary populations. Ancient DNA studies have great potential to shed light on the evolution of populations because they provide the opportunity to sample from the same population at different points in time. Here, we show that a sample of mitochondrial DNA (mtDNA) control region sequences from 68 early medieval Icelandic skeletal remains is more closely related to sequences from contemporary inhabitants of Scotland, Ireland, and Scandinavia than to those from the modern Icelandic population. Due to a faster rate of genetic drift in the Icelandic mtDNA pool during the last 1,100 years, the sequences carried by the first settlers were better preserved in their ancestral gene pools than among their descendants in Iceland. These results demonstrate the inferential power gained in ancient DNA studies through the application of population genetics analyses to relatively large samples

    Instruments for patient education: Psychometric evaluation of the expected knowledge (EKHP) and the received knowledge of hospital patients (RKHP)

    No full text
    Purpose: In patient education, there is a need for valid and reliable instruments to assess and tailor empowering educational activities. In this study, we summarize the process of producing two parallel instruments for analyzing hospital patients’ expectations (Expected Knowledge of Hospital Patients, EKhp) and received knowledge (Received Knowledge of Hospital Patients, RKhp) and evaluate the psychometrics of the instruments based on international data. In the instruments, six elements of empowering knowledge are included (bio-physiological, functional, experiential, ethical, social, and financial). Patients and Methods: The original Finnish versions of EKhp and RKhp were tested for the first time in 2003, after which they have been used in several national studies. For international purposes, the instruments were first translated into English, then to languages of the seven participating European countries, using double-checking procedure in each one, and subsequently evaluated and confirmed by local researchers and language experts. International data collection was performed in 2009–2012 with a total sample of 1,595 orthopedic patients. Orthopedic patients were selected due to the increase in their numbers, and need for educational activities. Here we report the psychometrics of the instruments for potential international use and future development. Results: Content validities were confirmed by each participating country. Confirmatory factor analyses supported the original theoretical, six-dimensional structure of the instruments. For some subscales, however, there is a need for further clarification. The summative factors, based on the dimensions, have a satisfactory internal consistency. The results support the use of the instruments in patient education in orthopedic nursing, and preferably also in other fields of surgical nursing care. Conclusion: EKhp and RKhp have potential for international use in the evaluation of empowering patient education. In the future, testing of the structure is needed, and validation in other fields of clinical care besides surgical nursing is especially warranted. © 2020 Leino-Kilpi et al

    87Sr/86Sr Ratios and Atmospheric Noble Gases in Theistareykir Geothermal Fluids: A Record of Glacial Water

    No full text
    The determination of the current and past recharge sources, as well as the reconstruction of the timing of the recharge in geothermal reservoirs, is required in order to correctly assess the resource potential of these systems. Theistareykir is a newly developed geothermal field close to the well-known exploited fields of Krafla and Námafjall in NE Iceland. In this study, the87Sr/86Sr ratios measured in deep geothermal fluids are presented and, together with the Cl and noble gas signatures, are used to place constraints on the fluid sources. The Cl/Sr and87Sr/86Sr ratios show a peculiar and unique composition among Icelandic geothermal fluids. The87Sr/86Sr ratios range from 0.70355 to 0.70671, suggesting the presence of a significant seawater component—possibly marine aerosols added to rain or snowfall—as well as an additional source of Sr leached from local basalts. Moreover, a correlation between the atmospheric noble gas (ANGs) elemental ratios Ne/Ar, Kr/Ar and Xe/Ar, and the87Sr/86Sr ratios is observed. The latter results from the mixing of meteoric water with Sr leached from local basalts, meteoric water containing unrelated Sr from seawater, and recharge water with ANGs derived from trapped air bubbles in snow. We suggest that the combined ANGs and Sr seawater signatures are representative of a glacial water source derived from the melting of compacting snow. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
    corecore