27 research outputs found

    Hedging against biodiversity loss : forest herbs’ performance in hedgerows across temperate Europe

    Get PDF
    Questions: How do contrasting environmental conditions among forests and hedgerows affect the vegetative and reproductive performance of understorey forest herbs in both habitats? Can hedgerows support reproductive source populations of forest herbs, thus potentially allowing progressive dispersal of successive generations along these linear habitats? Location: Hedgerows and deciduous forest patches in agricultural landscapes across the European temperate biome. Methods: First, we assessed differences in environmental conditions among forests and hedgerows. Next, we quantified plant performance based on a set of functional life‐history traits for four forest herbs (Anemone nemorosa, Ficaria verna, Geum urbanum, Poa nemoralis) with contrasting flowering phenology and colonisation capacity in paired combinations of forests and hedgerows, and compared these traits among both habitats. Finally, we assessed relationships between plant performance and environmental conditions in both habitats. Results: All study species showed a higher above‐ground biomass in hedgerows than in forests. For Poa nemoralis and Geum urbanum, we also found a higher reproductive output in hedgerows, which was mainly correlated to the higher sub‐canopy temperatures therein. The “ancient forest herb” Anemone nemorosa, however, appeared to have a lower reproductive output in hedgerows than in forests, while for Ficaria verna no reproductive differences were found between the two habitats. Conclusions: This is the first study on such a broad geographical scale to provide evidence of reproductive source populations of forest herbs in hedgerows. Our findings provide key information on strategies by which forest plants grow, reproduce and disperse in hedgerow environments, which is imperative to better understand the dispersal corridor function of these wooded linear structures. Finally, we highlight the urgent need to develop guidelines for preserving, managing and establishing hedgerows in intensive agricultural landscapes, given their potential to contribute to the long‐term conservation and migration of forest herbs in the face of global environmental change

    Soil seed bank responses to edge effects in temperate European forests

    Get PDF
    Aim The amount of forest edges is increasing globally due to forest fragmentation and land-use changes. However, edge effects on the soil seed bank of temperate forests are still poorly understood. Here, we assessed edge effects at contrasting spatial scales across Europe and quantified the extent to which edges can preserve the seeds of forest specialist plants. Location Temperate European deciduous forests along a 2,300-km latitudinal gradient. Time period 2018-2021. Major taxa studied Vascular plants. Methods Through a greenhouse germination experiment, we studied how edge effects alter the density, diversity, composition and functionality of forest soil seed banks in 90 plots along different latitudes, elevations and forest management types. We also assessed which environmental conditions drive the seed bank responses at the forest edge versus interior and looked at the relationship between the seed bank and the herb layer species richness. Results Overall, 10,108 seedlings of 250 species emerged from the soil seed bank. Seed density and species richness of generalists (species not only associated with forests) were higher at edges compared to interiors, with a negative influence of C : N ratio and litter quality. Conversely, forest specialist species richness did not decline from the interior to the edge. Also, edges were compositionally, but not functionally, different from interiors. The correlation between the seed bank and the herb layer species richness was positive and affected by microclimate. Main conclusions Our results underpin how edge effects shape species diversity and composition of soil seed banks in ancient forests, especially increasing the proportion of generalist species and thus potentially favouring a shift in community composition. However, the presence of many forest specialists suggests that soil seed banks still play a key role in understorey species persistence and could support the resilience of our fragmented forests

    The European Forest Plant Species List (EuForPlant): Concept and applications

    Get PDF
    Question When evaluating forests in terms of their biodiversity, distinctiveness and naturalness, the affinity of the constituent species to forests is a crucial parameter. Here we ask to what extent are vascular plant species associated with forests, and does species’ affinity to forests vary between European regions? Location Temperate and boreal forest biome of Northwestern and Central Europe. Methods We compiled EuForPlant, a new extensive list of forest vascular plant species in 24 regions spread across 13 European countries using vegetation databases and expert knowledge. Species were region-specifically classified into four categories reflecting the degree of their affinity to forest habitats: 1.1, species of forest interiors; 1.2, species of forest edges and forest openings; 2.1, species that can be found in forest as well as open vegetation; and 2.2, species that can be found partly in forest, but mainly in open vegetation. An additional “O” category was distinguished, covering species typical for non-forest vegetation. Results EuForPlant comprises 1,726 species, including 1,437 herb-layer species, 159 shrubs, 107 trees, 19 lianas and 4 epiphytic parasites. Across regions, generalist forest species (with 450 and 777 species classified as 2.1 and 2.2, respectively) significantly outnumbered specialist forest species (with 250 and 137 species classified as 1.1 and 1.2, respectively). Even though the degree of shifting between the categories of forest affinity among regions was relatively low (on average, 17.5%), about one-third of the forest species (especially 1.2 and 2.2) swapped categories in at least one of the study regions. Conclusions The proposed list can be used widely in vegetation science and global change ecology related to forest biodiversity and community dynamics. Shifting of forest affinity among regions emphasizes the importance of a continental-scale forest plant species list with regional specificity.publishedVersio

    The European Forest Plant Species List (EuForPlant): Concept and applications

    Get PDF
    Question When evaluating forests in terms of their biodiversity, distinctiveness and naturalness, the affinity of the constituent species to forests is a crucial parameter. Here we ask to what extent are vascular plant species associated with forests, and does species' affinity to forests vary between European regions? Location Temperate and boreal forest biome of Northwestern and Central Europe. Methods We compiled EuForPlant, a new extensive list of forest vascular plant species in 24 regions spread across 13 European countries using vegetation databases and expert knowledge. Species were region-specifically classified into four categories reflecting the degree of their affinity to forest habitats: 1.1, species of forest interiors; 1.2, species of forest edges and forest openings; 2.1, species that can be found in forest as well as open vegetation; and 2.2, species that can be found partly in forest, but mainly in open vegetation. An additional "O" category was distinguished, covering species typical for non-forest vegetation. Results EuForPlant comprises 1,726 species, including 1,437 herb-layer species, 159 shrubs, 107 trees, 19 lianas and 4 epiphytic parasites. Across regions, generalist forest species (with 450 and 777 species classified as 2.1 and 2.2, respectively) significantly outnumbered specialist forest species (with 250 and 137 species classified as 1.1 and 1.2, respectively). Even though the degree of shifting between the categories of forest affinity among regions was relatively low (on average, 17.5%), about one-third of the forest species (especially 1.2 and 2.2) swapped categories in at least one of the study regions. Conclusions The proposed list can be used widely in vegetation science and global change ecology related to forest biodiversity and community dynamics. Shifting of forest affinity among regions emphasizes the importance of a continental-scale forest plant species list with regional specificity
    corecore