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Abstract
1.	 Forest biodiversity world-wide is affected by climate change, habitat loss and frag-

mentation, and today 20% of the forest area is located within 100 m of a forest 
edge. Still, forest edges harbour a substantial amount of terrestrial biodiversity, 
especially in the understorey. The functional and phylogenetic diversity of forest 
edges have never been studied simultaneously at a continental scale, in spite of 
their importance for the forests' functioning and for communities' resilience to 
future change.

2.	 We assessed nine metrics of taxonomic, phylogenetic and functional diversity of 
understorey plant communities in 225 plots spread along edge-to-interior gradi-
ents in deciduous forests across Europe. We then derived the relative effects and 
importance of edaphic, stand and landscape conditions on the diversity metrics.

3.	 Here, we show that taxonomic, phylogenetic and functional diversity metrics re-
spond differently to environmental conditions. We report an increase in func-
tional diversity in plots with stronger microclimatic buffering, in spite of their 
lower taxonomic species richness. Additionally, we found increased taxonomic 
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1  | INTRODUC TION

Forest biodiversity world-wide is affected by climate change, land-
use change and habitat loss (Foley et al., 2005; Lenoir et al., 2008; 
Pereira et  al.,  2012; Vellend et  al.,  2013; Zellweger et  al.,  2020). 
Future climate change is predicted to cause further biodiver-
sity losses (Malcolm et  al.,  2006; Thomas et  al.,  2004; Thuiller 
et  al.,  2011; Trisos et  al.,  2020) as biodiversity redistribution is 
hampered by habitat fragmentation in terrestrial systems (Lenoir 
et al., 2020). In forests, the largest part of plant species richness, 
up to more than 80%, is located in the understorey (Gilliam, 2007). 
Furthermore, understorey communities play an important role in 
forest ecosystem dynamics by mediating nutrient cycling, tree re-
generation and other crucial ecosystem functions (Gilliam, 2007; 
Landuyt et al., 2019).

Resurvey studies showed no general decline in species rich-
ness of understorey communities over the past decades due to bal-
anced local colonisations and extinctions (Keith et al., 2009; Vellend 
et al., 2013). However, if a limited set of taxa replaces many different 
species across the forest biome, homogenisation can lead to losses 
of total biodiversity on the scale of the forest biome, even though lo-
cally no decline in species richness is registered (Staude et al., 2020). 
During the past century, herbaceous understorey plant communities 
homogenised by an increasing presence of nutrient-demanding and 
shade-tolerant species (Keith et al., 2009; Naaf & Wulf, 2010; Prach 
& Kopecky, 2018; Staude et al., 2020; Van den Berge et al., 2019). 
Simultaneously, climate change causes an increasing dominance 
of warm-adapted species in understorey communities, a process 
referred to as thermophilisation (Bertrand et  al.,  2011; De Frenne 
et  al.,  2013; Zellweger et  al.,  2020). Such changes in community 

composition might affect the functional or phylogenetic diversity 
of understorey communities, as well as the role of the understorey 
in forest ecosystem dynamics (Wardle et al., 2011). Therefore, it is 
important to expand our understanding from species richness to 
functional and phylogenetic diversity and to investigate which envi-
ronmental factors are driving different diversity patterns in under-
storey plant communities.

Human pressure on forests leads to forest fragmentation, 
and consequently to increasing forest edge-to-interior ratios 
with important consequences for forest biodiversity (Haddad 
et  al.,  2015) and its redistribution as climate warms (Lenoir 
et al., 2020). Currently, 70% of forested area is located closer than 
1 km to a forest edge and 20% is even closer than 100 m (Haddad 
et al., 2015). Therefore, it is important to understand the ecolog-
ical processes occurring in forest edges, in addition to those of 
forest interiors. Many environmental factors change drastically 
from the forest's edge to its interior (Gehlhausen et  al.,  2000; 
Matlack,  1993). Forest edges receive more atmospheric acidify-
ing and eutrophying deposition (Devlaeminck et al., 2005; Wuyts 
et  al.,  2008) and have higher nitrogen and carbon stocks, com-
pared to the interior (Meeussen et  al.,  2021; Remy et  al.,  2016). 
Therefore, the increasing proportion of forest edges might ac-
celerate the current homogenisation of understorey plant com-
munities, which is characterised by an increasing presence of 
nutrient-demanding species (Staude et  al.,  2020; Van den Berge 
et  al.,  2019; Verheyen et  al.,  2012). Furthermore, forest edges 
are characterised by increased wind speeds and incoming solar 
radiation, resulting in more variable microclimates and drier soil 
conditions than forest interiors (Chen et  al.,  1999; Gehlhausen 
et  al.,  2000; Matlack,  1993). Such conditions typically harbour 

species richness at the forest edge, but in forests with intermediate and high open-
ness, these communities had decreased phylogenetic diversity.

4.	 Functional and phylogenetic diversity revealed complementary and important 
insights in community assembly mechanisms. Several environmental filters were 
identified as potential drivers of the patterns, such as a colder macroclimate and 
less buffered microclimate for functional diversity. For phylogenetic diversity, 
edaphic conditions were more important. Interestingly, plots with lower soil pH 
had decreased taxonomic species richness, but led to increased phylogenetic di-
versity, challenging the phylogenetic niche conservatism concept.

5.	 Synthesis. Taxonomic, phylogenetic and functional diversity of understorey com-
munities in forest edges respond differently to environmental conditions, provid-
ing insight into different community assembly mechanisms and their interactions. 
Therefore, it is important to look beyond species richness with phylogenetic and 
functional diversity approaches when focusing on forest understorey biodiversity.

K E Y W O R D S

biodiversity, forest edge, forest understorey, functional diversity, microclimate, phylogenetic 
diversity, species richness
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communities with a high proportion of generalist species, as 
forest generalists avoid the shady, humid and strongly buffered 
microclimate of forest interiors (Govaert et  al.,  2020; Normann 
et al., 2016). Such edge conditions and a dominance of forest gen-
eralists might locally reduce the functional or phylogenetic diver-
sity of these forest edge communities. However, it is not yet clear 
which environmental factors affect functional and phylogenetic 
diversity of understories in forest edges.

The macroclimate and surrounding landscape matrix have 
an additional effect on understorey diversity next to edaphic 
and stand conditions. Macroclimate is a well-known driver of 
biodiversity (Francis & Currie,  2003; Kreft & Jetz,  2007). Mean 
annual temperature and potential evapotranspiration, for exam-
ple, are important predictors of plant species richness (Francis 
& Currie,  2003; Kreft & Jetz,  2007; Qian & Ricklefs,  2007). In 
Europe, many forests are situated in fragmented landscapes and 
many forest specialists have low colonisation capacities (Hermy & 
Verheyen, 2007; Verheyen et al., 2003); the amount of habitat and 
fragmentation can thus have a considerable effect on understorey 
diversity (Govaert et  al.,  2020; Valdes et  al.,  2015). The habitat 
amount hypothesis states that not necessarily patch isolation or 
size, but the amount of habitat present in the ‘local landscape’ af-
fects species density (Fahrig,  2013; Watling et  al.,  2020). Lower 
species richness of forest generalists and especially specialists was 
found in forest patches surrounded by less forested area (within 
a radius of 100–500 m; Govaert et al., 2020; Takkis et al., 2018; 
Valdes et al., 2015).

Most studies on understorey biodiversity rely on taxonomic spe-
cies richness due to its simplicity and convenience. However, during 
the last two decades, the focus has changed from number of species 
towards their ecological diversity, that is, the degree to which spe-
cies differ in terms of their function, niche or evolutionary history 
(Cadotte et al., 2013). The ecological diversity can be assessed with 
a functional approach, based on functional traits, and with a phylo-
genetic approach, based on species' genealogies. Both approaches 
can add complementary information for conservation (Cadotte & 
Tucker, 2018; Carvalho et al., 2017). The functional diversity metrics 
can provide important information regarding ecosystem function-
ing (Cadotte et al., 2011; Flynn et al., 2011), whereas phylogenetic 
diversity relates to genetic variability, which is believed to improve 
the communities' adaptability to future change (Cavender-Bares 
et al., 2009).

Functional and phylogenetic metrics can provide insight into the 
community assembly of forest understorey communities (Gerhold 
et al., 2013; Thorn et al., 2016; Vanneste et al., 2019). At the finest 
spatial resolution of forest plant communities (usually 400 m2), com-
munity assembly is often attributed to the limiting similarity and com-
petitive exclusion mechanisms (Cavender-Bares et  al.,  2009; Webb 
et al., 2002). These mechanisms suggest that closely related (e.g. sis-
ter species) or functionally similar species compete more intensely 
than phylogenetically or functionally distant species. Consequently, 
the chance of coexistence is higher for distant-related or function-
ally divergent species (Webb et al., 2002). On a larger scale involving 

landscape or regional extents and coarser spatial resolutions (be-
tween 400  m2 and 1  km2), the environmental filtering mechanism 
limits the diversity of communities, filtering for species adapted to 
the specific environment through similar ecological strategies and/
or phylogenetic histories (Cavender-Bares et  al.,  2009; Laliberte 
et al., 2014).

When species retain their niche and related ecological traits over 
time, with niche defined as the set of biotic and abiotic conditions 
where a species can persist (Holt, 2009), this can be described as 
niche conservatism (Wiens et  al.,  2010). Phylogenetic niche con-
servatism then expands this concept to related species (Wiens 
et al., 2010). The degree of phylogenetic conservatism of functional 
traits and the shape of the phylogenetic tree thus determine the cor-
respondence of phylogenetic and functional diversity approaches 
(Mazel et al., 2017). They might result in contrasting plant diversity 
patterns and therefore, contribute different important information 
to provide a more general view on the communities' biodiversity 
(Cadotte et al., 2013; Thorn et al., 2020). While numerous studies 
have unravelled how taxonomic and compositional diversity are 
affected in deciduous forests by environmental drivers (Depauw 
et al., 2019; Macek et al., 2019; Price & Morgan, 2010; Van Calster 
et al., 2008), only few studies have simultaneously assessed taxo-
nomic, functional and phylogenetic diversity of the understorey (e.g. 
Closset-Kopp et al., 2019; Wasof et al., 2018) and never before at the 
continental scale.

Here we assessed different metrics of taxonomic, phylogenetic 
and functional diversity of understorey herb communities in 225 
plots spread along edge-to-interior gradients in deciduous forests 
across Europe. We capitalised on large-scale macroclimatic latitu-
dinal and altitudinal gradients in combination with fine-grain man-
agement and edge-to-core gradients in microclimate. We specifically 
assessed the following hypotheses for the understorey biodiversity 
in European forest edges:

H1: We expected different responses to environmen-
tal predictors, in terms of magnitude and direction, 
between the taxonomic, phylogenetic and functional 
diversity metrics that we derived in our study.

H2: We expected taxonomic diversity to increase 
with higher light availability and less buffered micro-
climates, in contrast to functional and phylogenetic 
diversity, which we expected to decrease due to 
the increased presence and dominance of general-
ist species: that is, local functional and phylogenetic 
homogenisation.

H3: We expected a higher importance of edaphic and 
stand conditions than landscape conditions for phylo-
genetic and functional diversity, as edaphic and stand 
conditions strongly influence community assembly 
processes such as environmental filtering and species' 
competitive ability.
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2  | MATERIAL S AND METHODS

2.1 | Study area and experimental set-up

We selected European broadleaved forests with a dominance of oak 
species (mainly Quercus robur, Q. petraea and Q. cerris) locally comple-
mented with Fagus sylvatica, Betula pubescens, Populus tremula, Ulmus 
glabra, Alnus incana and Carpinus betulus, because these are important 
for conservation as biodiversity ‘hotspots’. All forests had a minimal 
area of 4 ha and were ancient forests; they have been continuously 
forested and were not converted to other land use since at least the 
oldest available maps, which is typically at least 150–300 years. We 
specifically did not include post-agricultural forests, to rule out any 
possible effect of past land-use history. To increase comparability, all 
forests had loamy soils with an intermediate moisture content.

We selected forests in nine regions spanning a 2,000-km long 
latitudinal gradient across Europe (from south to north): Italy, 
Switzerland, France, Belgium, Poland, Germany, southern Sweden, 
central Sweden and Norway. This latitudinal gradient includes a 
change in mean annual temperature (MAT) of >10°C and a varia-
tion in annual precipitation from approximately 550 to 1,250  mm 
(data retrieved from CHELSA database for 1979–2013 (resolution of 
~1 km2; Karger et al., 2017)). The latitudinal range of the broadleaved 
temperate forest biome, as given by Olson et al. (2001), was covered 
completely. In three of these regions (Italy, Belgium and Norway), 
an additional elevational gradient was established; forests were 
selected at low, intermediate and high elevations (ranging from 21 
to 908 m above sea level, corresponding to a smaller macroclimate 
gradient of 1.5–4°C MAT). In the other six regions, only lowland for-
ests were selected with elevations between 7.5 and 451 m above sea 
level (Figure D1).

In each of these regions, and at each elevation, forest stands 
with three different management types were selected. The first 
type of forests were ‘dense forests’, which were not thinned for at 
least 10–30 years. Additional criteria for this forest type were a well-
developed shrub layer and a complex vertical structure. These for-
ests generally had low canopy openness (5.8 ± 0.6%, mean of three 
spherical densiometer measurements (Baudry et al., 2014)) and high 
basal area (mean and standard error of 28.8 ± 1.5 m2/ha). The for-
ests of the second type, referred to as ‘intermediate forests’, were 
forests that were regularly thinned with the most recent thinning 
ideally 5–10 years ago. For this forest type, we looked for sparser 
shrub layers and a less complex vertical structure (canopy openness 
of 6.5  ±  0.6% and mean basal area of 31.4  ±  1.9  m2/ha). Forests 
of the third type were ‘open forests’, which were regularly thinned 
and most recently within 4 years before sampling. Additionally, the 
shrub layer and subdominant tree layer of these forests were ide-
ally sparse or lacking and the vertical structure comprised only the 
dominant tree layer. These forests were generally characterised by 
high canopy openness values (14.8 ± 2.1%) and low basal area values 
(21.6 ± 1.3 m2/ha).

In each forest stand, a transect was established perpendicular 
to the forest edge. Forest edge was defined as the outer edge of the 

forest stand that borders a matrix of open land. All forest edges were 
south-facing to ensure comparability since edge orientation can af-
fect forest microclimate and herbaceous vegetation considerably 
(Honnay et al., 2002; Matlack, 1993; Orczewska & Glista, 2005). Five 
plots of 3 m × 3 m were installed, with their plot centre on an expo-
nentially increasing distance from the forest edge 1.5, 4.5, 12.5, 35.5 
and 99.5 m. All plots were at least 100 m away from any forest edge 
other than the studied forest edge, to avoid interference with ef-
fects from other forest edges. Thus, in total 45 forest edge–interior 
transects were sampled ((6 lowland regions + 9 from 3 regions with 
elevation gradient) × 3 forest types), totalling 225 plots (45 forest 
edges × 5 plots per edge–interior transect). More detailed descrip-
tions of the selection criteria and structural characteristics of the 
different management types can be found in Govaert et al.  (2020) 
and Meeussen et al. (2020).

2.2 | Trait and phylogeny data

Vegetation surveys were performed during peak of the vegetation 
season (May–July 2018) according to the local phenology. In each 
3 m × 3 m plot, all vascular plant species were identified and their 
percentage ground cover was estimated (n = 353 species in total). 
The herb layer comprised all vascular plants smaller than 1m, includ-
ing woody, non-woody plants and lianas. Vegetation surveys are also 
described in detail by Govaert et al. (2020). Seedlings, shrub species 
and lianas in the herb layer were excluded from this analysis (n = 62 
species), since they do not remain in the herb layer throughout their 
life cycle and their trait values from most online databases do not 
represent the juveniles encountered in the herb layer (Table D1).

Three key functional traits were chosen based on the leaf-
height-seed plant ecology strategy scheme: seed mass, specific 
leaf area (SLA) and plant height. SLA informs on the plant's ac-
quisition and conservation of resources as it represents a trade-
off between photosynthetic rate and leaf life span (Wright 
et al., 2004). Plant height strongly determines the plant's competi-
tiveness for light and the dispersal of its seeds, whereas seed mass 
reflects the trade-off between seed output and seedling survival 
(Diaz et al., 2016; Westoby, 1998; Westoby & Wright, 2006). We 
assessed the variation of traits in our study species with a princi-
pal component analysis (PCA). A parallel analysis for determining 
significant principal components (method developed by Franklin 
et al. (1995)) showed that two significant principal components are 
necessary to represent the variation in the trait data (Figure D2a). 
The first two axes comprise 40.9% and 34.4% of the trait varia-
tion and the biplot shows the separate factor loading of functional 
traits on these axes (Figure D2b). The plot shows a broad spread 
of species, representing different plant strategies in three major 
trait domains informing on species' resource use, competition and 
reproduction (Diaz et al., 2016; Pierce et al., 2014; Westoby, 1998; 
Westoby et  al.,  2002; Figure D2b). Species-specific trait values 
were derived from several databases including the LEDA trait data-
base (Kleyer et al., 2008), BiolFlor (Kuhn et al., 2004) and the Kew 
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Seed Information Database (Royal Botanic Gardens Kew,  2021; 
Table D4). For 60 species, no or insufficient trait data were pres-
ent, these species were excluded from the analysis (Table D4). 
However, trait values were available for all species that occurred 
in more than 5% of the plots with a mean cover value of more than 
2% (Table D2).

We chose to extract a phylogenetic tree from the dated molec-
ular phylogeny of land plants constructed by Zanne et  al.  (2014), 
because this tree included plants from the entire study region, in-
cluding Mediterranean species. The extraction was done with the 
‘brranching’ package in r (Chamberlain,  2020). Two species were 
omitted from further analysis due to their absence in the phy-
logenetic tree of Zanne et  al.  (2014) (Phegopteris connectilis and 
Polypodium interjectum). Both species occurred in less than 3% of the 
plots. The resulting final vegetation matrix of the herb layer con-
tained 229 species (Figure 1), which represented on average 93.7% 
of the total herbaceous cover in the plots (Table D3). The final tree 
counted 229 tips, one for each species in the final vegetation matrix, 
and had 221 internal nodes (Figure 1).

2.3 | Diversity metrics

Traditionally, the diversity concept includes two components: spe-
cies richness and evenness. Species richness gives the number of 
species, and species evenness the equitability of their relative abun-
dances. Generally, species diversity is defined as a metric including 
both species richness and species evenness (Smith & Wilson, 1996). 
However, based on phylogeny or function, diversity can also be re-
garded as a measure of variation in the community, irrespective of 
species richness. Therefore, we always calculated three metrics, that 
is, richness, evenness and diversity or variability metrics, and this 
based on taxonomy, phylogeny or function to come to nine response 
variables (Table 1).

Regarding taxonomy, we calculated species richness (Tax.rich) 
(number of species per plot) and the Evar evenness index (Tax.
even), proposed by Smith and Wilson (1996). This evenness index 
ranges from zero to one, is independent of species richness and 
was calculated with the ‘codyn’ r package (Hallett et al., 2016). As 
diversity metric we calculated the Shannon diversity index (Tax.div) 
(Shannon, 1948).

Phylogenetic diversity metrics were calculated, using the ‘pez’ r 
package (Pearse et al., 2015). First, the phylogenetic species vari-
ability (Phy.div) of the community indicates the variation in evolu-
tionary history of the species. The metric ranges between zero and 
one and is independent of the community's species richness. A value 
of one characterises a community in which none of the species has a 
lineage in common, and a value close to zero indicates a community 
of species, which share large parts of their lineages in the phyloge-
netic tree (Helmus et al., 2007). Second, phylogenetic species rich-
ness (Phy.rich) was calculated by multiplying Phy.div with species 
richness values (Helmus et  al.,  2007). Third, phylogenetic species 
evenness (Phy.even) was calculated by adapting Phy.div to take the 

abundances of species into account, as such it combines evenness in 
abundance and phylogeny (Helmus et al., 2007).

Finally, functional metrics were calculated using the ‘fd’ pack-
age in r (Laliberté & Legendre,  2010). Traits were standardised to 
mean zero and unit variance and a species-species Euclidian dis-
tance matrix was computed. The ‘Cailliez’ correction method was 
used to correct for negative eigenvalues (Cailliez, 1983) and a prin-
cipal coordinates analysis (PCA) was performed with the resulting 
species-species distance matrix. The axes obtained from the PCA 
were used to compute functional richness (Fun.rich) and functional 
evenness (Fun.even) indices (Villéger et al., 2008). Functional rich-
ness reports on the trait space volume, whereas functional even-
ness assesses simultaneously the evenness of species distribution 
in trait space and evenness of their abundances. Finally, the Rao's 
quadratic entropy (Fun.div) was calculated based on relative species 
abundances and pairwise functional differences between species 
(Botta-Dukat,  2005; Laliberté & Legendre,  2010). This distance-
based metric is frequently used to quantify functional diversity and 
is independent of species richness (Botta-Dukat, 2005; Laliberté & 
Legendre, 2010).

Mean and standard deviations of the nine diversity metrics are 
given for the nine study regions in Table D6.

2.4 | Environmental predictor variables

2.4.1 | Edaphic conditions

In each plot of 3  m  ×  3  m, the forest floor or organic soil hori-
zon (i.e. litter, humus and fragmentation layer) was sampled in a 
20  cm  ×  20  cm subplot from its surface to the mineral soil layer 
underneath, after removal of the herb layer. These samples were 
dried to constant weight at 65°C for 48  hr and then, the organic 
soil layer mass was determined (mass OS). This variable was used as 
indicator for litter quality, thickness and nutrient availability since 
low-degradable litter tends to accumulate on the forest floor and 
results in slower nutrient turnover and lower nutrient availability 
(Scott & Binkley,  1997). Additionally, dense litter layers may pose 
a physical barrier for germination of forest species or reduce ger-
mination through phytotoxic components (Facelli & Pickett, 1991). 
Texture analysis (% sand, silt and clay) was performed by sieving and 
sedimentation of mineral soil samples of 10–20 cm depth, whereas 
soil pH was determined for mineral soil samples of 0–10 cm depth. 
For these analyses, five subsamples were taken per plot and pooled 
(detailed description in Supporting Information A).

2.4.2 | Stand conditions

In each plot, the microclimate temperature was recorded hourly 
at 1 m height using a temperature data logger (Lascar EL-USB-1, 
range of −30 to +80°C, resolution of 0.5°C) covered by a radia-
tion shield (Figure D3). For each of the nine regions and for each 
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F I G U R E  1   Phylogenetic tree of species included in this study. This tree was standardised taxonomically with The Plant List (2013) 
and visualised with ggtree and gheatmap in R (Yu et al., 2017). Functional traits are represented with a colour scale around the tree, plant 
height (m) on the inner circle, SLA (mm2/mg) on the middle circle and seed mass (mg) on the outer circle
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of the three elevation levels, the temperature was also measured 
in an identical set-up in an open field close to the forest stands 
(‘reference’ sensor). The temperature measurements of these ‘ref-
erence’ sensors were used to calculate temperature offset values 
(offset  =  sub-canopy temperature  −  free air temperature  =  plot 
sensor  −  ‘reference’ sensor). Positive and negative offset values 
represent warmer and cooler forest microclimates, respectively, 
compared to the macroclimate temperature. Typically, the for-
est microclimate is buffered from temperature extremes and this 
buffering is largest during the summer months, when understo-
rey plants are most likely to experience extreme heat and drought 
stress (Zellweger et  al.,  2019). Also cold temperatures and frost 
are limiting factors regarding plant survival and distributions 
(Bucher et al., 2019; Sakai & Larcher, 1987; Svenning et al., 2008; 
Woodward, 1990). For these reasons, we focused on the effect of 
cooling of maximum temperatures in summer and warming of min-
imum temperatures in winter. During winter (from October 2018 
to March 2019), the offset was calculated for the mean daily 5th 
percentile temperature (‘winter offset’) and during summer (from 
April to September 2019) for the mean daily 95th percentile tem-
peratures (‘summer offset’).

The three forest management types are expected to impact mi-
croclimate and light availability at the forest floor, since they differ in 
density and complexity. We quantified forest structural differences 
using plant area index (PAI), which is half of the surface area of all 
above-ground vegetation matter (including stems, branches and 
leaves) per unit surface area. PAI was calculated as the integral of 
vertically resolved plant area per volume density (m2/m3) profiles 
derived from single-scan position terrestrial laser scanning (TLS) 
using a RIEGL VZ-400 (RIEGL Laser Measurement Systems GmbH, 
Horn, Austria) in the centre of each plot. PAI thus gives an indica-
tion of the denseness and complexity of the forest structure and is 
negatively related to light availability at the forest floor. We chose 
to apply TLS, since the technique is highly reproducible and more 
direct compared to conventional forest surveys (Calders et al., 2015, 
2018; Liang et al., 2016). The TLS method was described in detail by 
Meeussen et al. (2020).

2.4.3 | Landscape conditions

The macroclimate was taken into account as mean annual tem-
perature and annual precipitation, which were retrieved for the co-
ordinates of each plot from the CHELSA database for 1979–2013 
(resolution of ~1 km2) (Karger et al., 2017). Plots from one edge-to-
interior transect might be located within the same or neighbouring 
1 km2 grid cells and thus have very similar macroclimatic conditions, 
whereas microclimatic conditions will vary depending on the forest 
edge distance and structure. To incorporate the amount of habitat 
in the ‘local landscape’, the percentage area with a tree cover >20% 
was calculated within a radius of 500  m based on satellite-based 
global tree cover data with a spatial resolution of 30  m (Hansen 
et al., 2013).

Mean and standard deviations of the nine predictor variables 
(mass OS, sand fraction, pH, plant area index, winter offset, summer 
offset, mean annual temperature, annual precipitation, forest cover) 
are given for the nine study regions in Table D5.

2.5 | Data analyses

We used generalised linear mixed models (GLMMs) to infer responses 
of the nine diversity metrics (Table 1) to environmental drivers and 
performed all analyses in R (R Development Core Team, 2020). Due 
to the hierarchical nature of the data, GLMMs with transect ID (45 
levels corresponding to 45 edge-to-interior transects) as random 
effect (random intercept) nested within region (nine levels corre-
sponding to nine regions) were used (225 plots nested in 45 transect 
nested in nine regions). For models with species richness as response 
variable, a Poisson error distribution was used with a log link func-
tion since these are count data, and, as a consequence, these models 
can be nonlinear. For all other models a Gaussian error distribution 
was applied, resulting in strictly linear models. Correlations between 
predictor variables were assessed with Pearson correlation coef-
ficients before modelling (Figure D4). Multicollinearity of the pre-
dictor variables in the models was assessed using variance inflation 
factors (VIFs) with the vif function from the package ‘cars’ (Fox & 
Weisberg, 2019 ). For all models, VIFs were smaller than 3.1 and thus 
no strong multicollinearity issues were detected among the set of 
predictor variables we used (Neter et al., 1990; Zuur et al., 2009). 
The models were fitted with the ‘lme4’ package (Bates et al., 2015).

To explore the effects of latitude, elevation, forest structure 
type and the distance to the edge (the design variables of the ex-
perimental set-up) on the diversity metrics, GLMMs were performed 
with these design variables as fixed effects, including all two-way 
interactions. The distance to the edge was log-transformed to meet 
model assumptions (loge).

Furthermore, we included continuous environmental variables in 
the models. To represent the edaphic conditions, we included sand 
fraction, pH of the mineral soil and mass of the organic soil layer 
(mass OS). Mass OS was log-transformed due to its skewed distribu-
tion (loge). For forest structure, we used the PAI, summer offset and 
winter offset. For landscape conditions, we included two macrocli-
mate variables, mean annual temperature (MAT) and annual precipi-
tation, and percentage forest cover. No interactions were taken into 
account to avoid too much predictor terms and complexity. Equation 
1 represents the model structure of the global model.

Starting from the global model with all predictor variables, model 
selection was performed based on the lowest corrected Akaike in-
formation criterion (AICc), testing all possible combinations of pre-
dictor variables with the dredge function from the package ‘MuMin’ 
(Barton,  2020). During model selection, maximum likelihood was 

(1)

y ∼%sand+pH+ log (mass OS)+summer offset+winter offset+PAI

+MAT+annual precipitation+%forest cover+ (1|region∕transect).
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used to fit models, whereas afterwards, the restricted maximum 
likelihood approach was used to obtain model estimates of the 
best model. p-values were obtained with the ‘lmerTest’ package 
(Kuznetsova et  al.,  2017) and corrected for multiple testing with 
false discovery rates based on Pike (2011). All continuous predictor 
variables were scaled to unit variance and mean zero.

As second step in the analysis, we performed a variation parti-
tioning to assess the importance of the predictor variables of edaphic, 
stand and landscape conditions, following the procedure of Legendre 
and Legendre (2006). This second step was only performed for Tax.
rich, Phy.div and Fun.div, as we chose to focus further analysis on 
this set of three independent metrics to obtain comparable and in-
dependent results regarding taxonomic, phylogenetic and functional 
diversity (Table 1; Botta-Dukat, 2005; Helmus et al., 2007; Schleuter 
et al., 2010). First, the global model was produced, including all nine 
predictors (Equation 1), and then models were produced with only 
one or two of three groups (edaphic—stand—landscape conditions). 
Each group had three predictor variables to balance the variation 
partitioning. For all models we obtained the proportion of variance 
explained by the fixed factors of the model (marginal R2, R2m), ac-
cording to Nakagawa and Schielzeth (2013). Finally, we calculated 
the amount of variation explained by each group and combination 
of groups by subtracting R2m from the of the global model. The vari-
ation explained by each group and intersection is reported as per-
centage of variation explained by the global model.

3  | RESULTS

The results that we highlight here are strongly focused on taxonomic 
richness (Tax.rich), phylogenetic diversity (Phy.div) and functional di-
versity (Fun.div) because they are most widely used and independ-
ent from changes in species number (Botta-Dukat,  2005; Helmus 
et al., 2007; Schleuter et al., 2010).

3.1 | Diversity patterns with latitude, forest 
type and distance to forest edge

We found that latitude, forest type and the distance to the forest edge, as 
well as the interaction between forest type and the edge distance, signifi-
cantly explained variation in several biodiversity metrics (Table B1). Tax.
rich decreased towards the forest interior, especially strong close to the 
edge (estimate ± standard error: −0.096 ± 0.022, p < 0.001). Contrastingly, 
Phy.div decreased towards the forest edge and this gradient was the 
steepest for the intermediate forest type, whereas dense forests had a 
higher Phy.div overall and the smallest edge-to-interior gradient (interac-
tion estimate ± SE: −0.045 ± 0.017, p = 0.029). While Tax.rich and Phy.
div showed no latitudinal gradient, Fun.div decreased towards the north 
(estimate ± SE: −0.005 ± 0.001, p = 0.005). Simultaneously, there was 
a significant difference between the forest management types, with the 
intermediate type showing the highest Fun.div (open compared to inter-
mediate type estimate ± SE: −0.009 ± 0.003, p = 0.03; Figure 2).

3.2 | Diversity patterns with landscape, stand and 
edaphic environmental conditions

In general, we found four of nine environmental predictors having 
a significant impact on multiple diversity metrics: soil pH, PAI, sum-
mer offset and mean annual temperature (MAT). From these, only 
summer offset explained variation for taxonomic, phylogenetic and 
functional diversity metrics. Annual precipitation and winter offset 
were not retained for any of the biodiversity metrics after model 
selection. The percentage forest cover in the surrounding landscape, 
mass of the organic soil layer and sand fraction showed no significant 
effects after correcting for multiple testing (Table 2). Furthermore, 
none of the environmental predictors significantly explained varia-
tion in functional richness and functional evenness, neither for taxo-
nomic nor phylogenetic evenness after p-value correction (Table 2).

Tax.rich decreased with decreasing light availability (increasing 
PAI) and stronger microclimatic buffering of summer maximum tem-
perature (more negative summer offset), whereas Fun.div increased 
when microclimatic buffering was stronger (Figure  3b,h; Table  2). 
Additionally, Tax.rich increased with higher pH values, whereas 
Phy.div decreased with increasing pH values (Figure 3c,f; Table 2). 
Furthermore, Fun.div increased with increasing MAT, while Tax.rich 
and Phy.div showed no significant response to MAT (Figure 3a,d,g; 
Table 2). Tax.rich, Phy.div and Fun.div thus exhibited contrasting re-
sponses to stand and edaphic conditions (Figure 3).

3.3 | Variation partitioning: Landscape, stand and 
edaphic conditions

For Tax.rich, all three variable groups (landscape, stand and edaphic 
conditions) explained large parts of the variation (42.8%, 52.4% and 
34.1% respectively). For both Phy.div and Fun.div we did find large 
differences between proportions of variation explained by the dif-
ferent groups. Most of the variation in Phy.div was explained by 
edaphic conditions (52.6%), followed by stand conditions (24.1%) and 
only a small amount of variation was explained by the landscape con-
ditions (8.5%). For Fun.div, the variation partitioning resulted in an 
opposite pattern. Landscape conditions explained most of the varia-
tion in Fun.div (60.2%), followed by the stand conditions (23.6%) and 
only a small amount of variation was explained by edaphic conditions 
(3.2%) (Figure 4; Figure D5).

4  | DISCUSSION

4.1 | Responses differ between taxonomic, 
phylogenetic and functional diversity metrics (H1)

The use of phylogenetic and functional diversity metrics along 
taxonomic metrics provided different, complementary informa-
tion on community assembly mechanisms in forest understorey 
plant communities across Europe. From the Pearson correlation 
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matrix, it was clear that some metrics were strongly correlated, 
such as taxonomic and phylogenetic richness, but that others 
were not (Table  1). Both phylogenetic and functional diversity 
were independent of taxonomic richness, showing that in this 
study, plots with higher species numbers in the understorey did 
not necessarily have higher phylogenetic or functional understo-
rey diversity.

Furthermore, we found different responses in both magnitude 
and direction to gradients of the experimental design of the study 
(Figure 2; Table B1) and to other environmental predictors (Table 2). 
Low mean annual temperatures (e.g. at high latitudes) led to lower 
functional diversity, whereas taxonomic richness and phyloge-
netic diversity showed no clear pattern driven by the macroclimate 
(Table 2; Figures 2 and 3). At high latitudes, environmental filtering 

F I G U R E  2   Taxonomic richness, 
phylogenetic diversity and functional 
diversity as a function of the latitude (a–c), 
distance to the forest edge (d–f) and the 
interaction with forest management type 
(c, e). The lines show model predictions 
for significant effects based on the 
generalised linear mixed models (Table 
B1) and shading corresponds to 95% 
confidence intervals. Yellow, blue and red 
colours in (d) and (e) indicate significant 
(interactive) effects of forest management 
type (see legend). Jittering on the X 
axis was added for clarity, as well as 
transparency of points, darker areas thus 
indicate several overlapping points. Model 
fit is shown in the panels with significant 
predictor as marginal R 2 (R2m) and 
conditional R 2 (R2c), following Nakagawa 
and Schielzeth (2013). We highlight 
results for Tax.rich combined with Phy.
div and Fun.div because of their wide use 
and independence from species number 
(Botta-Dukat, 2005; Helmus et al., 2007; 
Schleuter et al., 2010)
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probably led to a plant community with restricted variation in func-
tional traits, enabling the plants to survive longer and colder winters. 
For example, the community weighted mean of plant height tended 
to be smaller and SLA tended to be higher in plots with lower mean 
annual temperatures. Additionally, colder, more northern regions 
needed to be recolonised after the last glaciation period, causing 
a convergent functional composition regarding functional traits 
linked to dispersal, such as lower seed mass values (Pinto-Ledezma 
et al., 2018).

Also soil pH caused contrasting responses; species richness de-
creased with a lower pH, possibly due to higher soluble aluminium in 
acidic soils, which decreases plant root growth (Bojórquez-Quintal 
et al., 2017; Kopittke et al., 2015), in combination with the toxic ef-
fect of a low pH itself (Falkengren-Grerup, 1995; Falkengrengrerup 

& Tyler, 1993). Phylogenetic diversity, on the other hand, increased 
when the soil became more acidic, corroborating the findings of 
Piwczynski et al.,  (2016), which might be due to environmental fil-
tering for acidophilous species. Most often, environmental filtering 
leads to phylogenetic clustering, as was found in the understorey 
of Mediterranean oak forests (Selvi et  al.,  2016). This pattern can 
arise when the ability to cope with a particular environmental filter 
is shared in more closely related species of the community. In our 
study, however, these acidophilous communities often contained 
a mixture of forbs, graminoids and ferns (e.g. Stellaria holostea and 
Pteridium aquilinum co-occurring with Molinia caerulea in plots with 
low pH). Species from different phylogenetic lineages acquired the 
ability to grow in acidic soils independently, leading to phylogenetic 
variability instead. Clearly, the effect of environmental filtering on 

F I G U R E  3   The relationship of taxonomic richness, phylogenetic and functional diversity with landscape, stand and edaphic conditions as 
predictors (Table 2). Taxonomic richness (Tax.rich), phylogenetic diversity (Phy.div) and functional diversity (Fun.div) as a function of mean 
annual temperature (a, d, g), summer offset (b, e, h) and soil pH (c, f, i). The lines show model predictions for significant parameter estimates 
based on the generalised linear mixed models and shading corresponds to 95% confidence intervals. Jittering was added for clarity, as well 
as transparency of points, darker areas thus indicate several accumulated points at the same or overlapping location. We highlight results for 
Tax.rich combined with Phy.div and Fun.div because of their wide use and independence from species number (Botta-Dukat, 2005; Helmus 
et al., 2007; Schleuter et al., 2010)
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phylogenetic diversity depends strongly on the degree of phylo-
genetic conservatism of the traits which are favoured by the envi-
ronmental filter. These results suggest that in this situation niche 
conservatism might be the case within species but not phylogeneti-
cally, among related species.

There was no clear effect of soil pH on functional diversity. 
Plants might cope with acidity in different ways, which are not 
necessarily directly related to their general ecological strategy in 
terms of resource use, competition and reproduction (represented 
by SLA, plant height and seed mass). Mechanisms to deal with acid-
ity are often related to root traits, such as the secretion of organic 
acid anions or associations with mycorrhiza (Chen et  al.,  2013; 
Marschner, 1991). Furthermore, root traits provide highly useful in-
formation on, for example, velocity of resource turn-over and the 
association with mycorrhiza (Bergmann et al., 2020). Whereas some 
categorical root traits are becoming increasingly available (such as 
mycorrhiza type), quantitative root traits are not yet available for 
many understorey herbs. For example, specific root length data 
were only available for 37% of the species studied here, whereas 
this is one of the most studied below-ground traits (Table D7). In the 
future, root traits could greatly increase our understanding of biodi-
versity responses to environmental conditions, especially to edaphic 
factors such as soil pH.

4.2 | Effect of light availability and microclimatic 
buffering (H2)

Higher taxonomic richness was found in plots with higher light avail-
ability, a pattern clearly driving the increase towards the forest edges 

through a gradual decrease in plant area index (Table  2; Figure  2; 
Figure D6; Gehlhausen et  al.,  2000; Honnay et  al.,  2002; Vallet 
et al., 2010). The higher understorey species richness at the forest 
edge in this study is predominantly driven by an increase in forest 
generalist species (Govaert et al., 2020). Furthermore, the generalist 
richness was lower beneath canopy tree species casting more shade 
(Govaert et al., 2020). The lower light availability in the forest inte-
rior poses an environmental filter for the light demanding generalist 
edge species (Pellissier et al., 2013). The increasing availability of a 
limiting resource, such as light, can remove an environmental filter, 
increasing the number of species, but this process can lead to differ-
ent edge-to-interior patterns depending on the context and land-use 
history (e.g. Hofmeister et al., (2013)).

We also detect higher species richness in the less microclimat-
ically buffered forest edge plots (Figure  2; Figure D7). Strikingly, 
the functional diversity was lower in plots that are less buffered 
(Figure 3). Similarly, the plots in the open forest management type 
had lower functional diversity and less buffered summer tempera-
tures (Figure 2; Figure D7). It is possible that reduced microclimatic 
buffering due to less dense tree canopies made the forest under-
storey more susceptible to spring frost and summer drought (von 
Arx et  al.,  2013; Zellweger et  al.,  2019), acting as an environmen-
tal filter and favouring plants adapted to higher temperatures and 
lower soil moisture. Additionally, it is known that thermophilisation 
of understorey communities (the process in which warm-adapted 
species gain abundance over more cold-adapted species over time) 
occurs more in forest stands with less microclimatic buffering, 
especially when light availability is high (De Frenne et  al.,  2013). 
Thermophilisation can be driven by tall and competitive species (De 
Frenne et al., 2015), which could suppress smaller, less competitive 

F I G U R E  4   Variation partitioning. Venn–Euler diagrams for variation partitioning of taxonomic richness, phylogenetic and functional 
diversity. These diagrams show the proportion of explained variation (marginal R2) by three variable groups (landscape, stand and edaphic 
conditions) and the shared proportion of group combinations (intersection of circles) compared to the explained variation of the global model 
including all nine predictors. The size and numbers within the circles correspond to the proportion of explained variation. The proportion 
shared by all three groups is indicated with an arrow
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plants and drive a loss of functional diversity through competitive 
exclusion. To assess this hypothesis, resurveyed vegetation studies 
are needed (De Frenne et al., 2013; Feeley et al., 2020; Zellweger 
et  al.,  2020). Nevertheless, in an additional analysis we calculated 
the floristic temperature of the understorey communities and as-
sessed its relationship with microclimate. The floristic temperature 
increased when minimum winter temperatures were more buffered 
(less cold in winter), but we did not detect a link with the buffering of 
summer maximum temperatures (Supporting Information C).

Besides, forest microclimates are more buffered in warmer re-
gions (Figure D7; De Frenne et al.,  (2019)), and functional diversity 
increased with warmer macroclimate temperatures; this association 
could thus have contributed indirectly to the higher functional diver-
sity in strongly buffered forest plots.

Conversely, unmanaged forests often have a high basal area, high 
PAI and a complex forest structure providing strongly buffered mi-
croclimates (Frey et al., 2016) and low light levels on the forest floor 
(Hardwick et  al.,  2015). Higher functional diversity is often found 
in dense, unmanaged forests with low light levels (Closset-Kopp 
et al., 2019; Lelli et al., 2019; Liu et al., 2015). In such conditions, the 
proportion of generalist species is lower (Govaert et al., 2020) and 
the less competitive forest specialists shape the understorey com-
munities (Honnay et al., 2002).

Chesson's framework states that coexistence mechanisms can 
result from stabilising or equalising processes. Stabilising niche 
differences are crucial; niche differences among co-occurring spe-
cies (often inferred from species traits; but see HilleRisLambers 
et al., 2012) can be ensured, if biotic and abiotic factors force spe-
cies to experience stronger intraspecific than interspecific compe-
tition (Chesson,  2000). Equalising niche differences, on the other 
hand, are processes that suppress fitness inequality between spe-
cies resulting from many ecological and evolutionary factors, which 
fundamentally contributes to stable multispecies coexistence. Low 
light availability can function as an equalising mechanism, decreasing 
the growth of the most competitive species. Most forest specialist 
species might be quite similar in having low competitive abilities, for 
example, lower plant height than forest generalist species (Marinšek 
et al., 2015). As a result, the interspecific competition can be low and 
thus small niche differences could already cause larger intraspecific 
competition and stabilise the coexistence between these species. 
This is supported by the tendency of evenness metrics to increase 
with lower light availability.

Furthermore, stronger microclimatic buffering is often related to 
a higher complexity of the forest structure (Frey et al., 2016; Kovacs 
et al., 2017), which enhances heterogeneity in forest stratification 
and in forest-floor conditions. This could also increase the coexis-
tence of species with different abiotic preferences and explain the 
increased functional diversity. Further research might look deeper 
into the link between microclimatic buffering, thermophilisation, 
functional diversity in forests and possible consequences for ecosys-
tem functioning, such as nutrient cycling and litter decomposition.

We hypothesised that increased light and reduced microclimatic 
buffering could lead to local functional or phylogenetic homogenisation 

due to the increased presence of generalist species. Contrary to our 
expectation, we did not find lower functional diversity in forest edges 
or with more light (Figure B1; Table 2). However, weaker buffering of 
the microclimate did decrease functional diversity (Figure 3; Table 2). 
Further research might elucidate the different roles of light and mi-
croclimate in shaping the diversity of the forest understorey through 
controlled experimental set-ups separating both factors.

Regarding the phylogenetic diversity, we detected a significant 
interaction of the forest management type and distance to the edge 
(Figure 2). For the intermediate forest type, the phylogenetic diver-
sity decreased towards the forest edge, whereas it was more stable 
for the dense and open forest type. Both the increase in generalist 
species and the decrease in PAI at the forest edge were steepest and 
most abrupt for the intermediate forest types (Govaert et al., 2020; 
Meeussen et  al.,  2020). Abrupt changes in forest structure could 
thus be related to changes in phylogenetic diversity in the understo-
rey. Stand characteristics did account for 24% of explained variation 
of phylogenetic diversity in the variation partitioning, however, no 
strong direct linear responses to microclimate or plant area index 
were found after model selection (Figure 4; Table 2).

4.3 | Varying importance of landscape, stand and 
edaphic conditions (H3)

Landscape, stand and edaphic conditions were of relatively simi-
lar importance for Tax.rich. This could be expected from the 
well-known influence of edaphic and stand conditions on spe-
cies richness (Govaert et  al.,  2020; Van Calster et  al.,  2008; 
Vanhellemont et  al.,  2014) in combination with the large spatial 
gradient of the study, covering important changes in landscape con-
ditions (Bernhardt-Römermann et al., 2015). The phylogenetic and 
functional diversity metrics showed very different results. For Phy.
div, the importance of the landscape conditions was negligible com-
pared to the influence of stand and edaphic conditions. However, 
Li et al.  (2018) reported a high impact of macroclimatic factors for 
phylogenetic diversity but, in contrast to our study, their study ex-
tended to all ecosystem types and covered a larger spatial gradient, 
with larger variation in macroclimate. For the functional diversity, 
the macroclimatic temperature gradient explained most of the vari-
ation, acting as a strong overarching environmental filter, followed 
by the forest microclimate. We expected also a strong impact of 
edaphic conditions, similar to phylogenetic diversity, but this was 
not confirmed. The recurring difference between functional and 
phylogenetic diversity responses indicates that the conservation of 
plant height, SLA and seed mass through the phylogenetic tree of 
the understorey species is not very strong (Figure 1), challenging the 
niche conservatism concept and the notion of functional and phy-
logenetic diversity as substitutes. Furthermore, it also shows that 
the evolutionary history indeed comprises much more information 
about a species than three key functional traits, even though they 
represent the main plant strategies regarding resource acquisition, 
competitiveness and reproduction.
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Stand conditions were important for the three diversity met-
rics through regulation of light at the forest floor and microclimatic 
buffering. Nevertheless, the directions of responses were different. 
Trade-offs between diversity aspects are clearly present in decidu-
ous forests. It is thus essential to look beyond species counts when 
studying forest understorey plant diversity, certainly when inter-
ested in community assembly mechanisms.

5  | CONCLUSIONS

Combining taxonomy, phylogeny and functional traits proved to be 
important when assessing plant diversity of understorey communi-
ties in forest edges of temperate deciduous forests. We show that 
different diversity aspects can be driven by contrasting environ-
mental conditions and in different directions, leading to trade-offs 
between diversity metrics. It was clear that also for forest understo-
rey species, the reality is more complex than environmental filtering 
and competitive exclusion leading unequivocally to less and more 
diverse communities respectively. Diversity is an outcome of many 
different, interacting and context-dependent processes. Functional 
and phylogenetic diversity were no mere substitutes for each other, 
but revealed complementary and important insights. Future studies 
could acknowledge this complexity more by including intraspecific 
trait variation, an aspect which we did not consider here, but could 
help to understand functional biodiversity patterns and commu-
nity assembly mechanisms (Des Roches et  al.,  2018; Siefert,  2012; 
Violle et al., 2012). Furthermore, we suggest to measure and study 
below-ground traits of understorey herbs to enable a clearer under-
standing of functional diversity responses to edaphic conditions. We 
detected no significant local functional or phylogenetic homogenisa-
tion close to forest edges in general. However, we did find a decrease 
in phylogenetic diversity in forest edges for forests of intermediate 
and high openness and we did find a decreasing functional diversity 
in plots with less buffered microclimates. In the context of climate 
change, with increasing frequency of extreme summer temperatures 
(IPCC, 2018) and canopy disturbances due to drought, heat stress and 
insect attacks (Allen et al., 2010; Anderegg et al., 2015), it would be 
highly valuable to further investigate this relationship and possible 
consequences of functional homogenisation in the understorey for 
forest ecosystem functioning.
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