224 research outputs found

    A systematic review reveals conflicting evidence for the prevalence of antibodies against the sialic acid ‘xenoautoantigen’ Neu5Gc in humans and the need for a standardised approach to quantification

    Get PDF
    Copyright \ua9 2024 Hutton, Scott, Robson, Signoret and Fascione.Despite an array of hypothesised implications for health, disease, and therapeutic development, antibodies against the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) remain a subject of much debate. This systematic review of 114 publications aimed to generate a comprehensive overview of published studies in this field, addressing both the reported prevalence of anti-Neu5Gc antibodies in the human population and whether experimental variation accounts for the conflicting reports about the extent of this response. Absolute titres of anti-Neu5Gc antibodies, the reported prevalence of these antibodies, and the individual variation observed within experiments were analysed and grouped according to biological context (‘inflammation’, ‘xenotransplantation’, ‘biotherapeutic use’, ‘cancer’, and ‘healthy populations’), detection method, target epitope selection, and choice of blocking agent. These analyses revealed that the experimental method had a notable impact on both the reported prevalence and absolute titres of anti-Neu5Gc antibodies in the general population, thereby limiting the ability to ascribe reported trends to genuine biological differences or the consequence of experimental design. Overall, this review highlights important knowledge gaps in the study of antibodies against this important xenoautoantigen and the need to establish a standardised method for their quantification if the extent of the importance of Neu5Gc in human health is to be fully understood

    Single-molecule and super-resolved imaging deciphers membrane behavior of onco-immunogenic CCR5

    Get PDF
    The ability of tumors to establish a pro-tumorigenic microenvironment is an important point of investigation in the search for new therapeutics. Tumors form microenvironments in part by the “education” of immune cells attracted via chemotactic axes such as that of CCR5-CCL5. Further, CCR5 upregulation by cancer cells, coupled with its association with pro-tumorigenic features such as drug resistance and metastasis, has suggested CCR5 as a therapeutic target. However, with several conformational “pools” being reported, phenotypic investigations must be capable of unveiling conformational heterogeneity. Addressing this challenge, we performed super-resolution structured illumination microscopy (SIM) and single molecule partially TIRF-coupled HILO (PaTCH) microscopy of CCR5 in fixed cells. SIM data revealed a non-random spatial distribution of CCR5 assemblies, while Intensity-tracking of CCR5 assemblies from PaTCH images indicated dimeric sub-units independent of CCL5 perturbation. These biophysical methods can provide important insights into the structure and function of onco-immunogenic receptors and many other biomolecules

    Papillomavirus Capsid Binding and Uptake by Cells From Different Tissues and Species

    Get PDF
    The inability of papillomaviruses (PV) to replicate in tissue culture cells has hampered the study of the PV life cycle. We investigated virus-cell interactions by the following two methods: (i) using purified bovine PV virions or human PV type 11 (HPV type 11) virus-like particles (VLP) to test the binding to eukaryotic cells and (ii) using different VLP-reporter plasmid complexes of HPV6b, HPV11 L1 or HPV11 L1/L2, and HPV16 L1 or HPV16 L1/L2 to study uptake of particles into different cell lines. Our studies showed that PV capsids bind to a broad range of cells in culture in a dose-dependent manner. Binding of PV capsids to cells can be blocked by pretreating the cells with the protease trypsin. Penetration of PV into cells was monitored by using complexes in which the purified PV capsids were physically linked to DNA containing the gene for beta-galactosidase driven by the human cytomegalovirus promoter. Expression of beta-galactosidase occurred in < 1% of the cells, and the efficiency of PV receptor-mediated gene delivery was greatly enhanced (up to 10 to 20% positive cells) by the use of a replication-defective adenovirus which promotes endosomal lysis. The data generated by this approach further confirmed the results obtained from the binding assays, showing that PV enter a wide range of cells and that these cells have all functions required for the uptake of PV. Binding and uptake of PV particles can be blocked by PV-specific antisera, and different PV particles compete for particle uptake. Our results suggest that the PV receptor is a conserved cell surface molecule(s) used by different PV and that the tropism of infection by different PV is controlled by events downstream of the initial binding and uptake

    Analysis of CC chemokine and chemokine receptor expression in solid ovarian tumours

    Get PDF
    To understand the chemokine network in a tissue, both chemokine and chemokine receptor expression should be studied. Human epithelial ovarian tumours express a range of chemokines but little is known about the expression and localisation of chemokine receptors. With the aim of understanding chemokine action in this cancer, we investigated receptors for CC–chemokines and their ligands in 25 biopsies of human ovarian cancer. CC–chemokine receptor mRNA was generally absent from solid tumours, the exception being CCR1 which was detected in samples from 75% of patients. CCR1 mRNA localised to macrophages and lymphocytes and there was a correlation between numbers of CD8+ and CCR1 expressing cells (P = 0.031). mRNA for 6 CC-chemokines was expressed in a majority of tumour samples. In a monocytic cell line in vitro, we found that CCR1 mRNA expression was increased 5-fold by hypoxia. We suggest that the CC-chemokine network in ovarian cancer is controlled at the level of CC-chemokine receptors and this may account for the phenotypes of infiltrating cells found in these tumours. The leukocyte infiltrate may contribute to tumour growth and spread by providing growth survival factors and matrix metalloproteases. Thus, CCR1 may be a novel therapeutic target in ovarian cancer. http://www.bjcancer.com © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    CCR2 Acts as Scavenger for CCL2 during Monocyte Chemotaxis

    Get PDF
    <div><h3>Background</h3><p>Leukocyte migration is essential for effective host defense against invading pathogens and during immune homeostasis. A hallmark of the regulation of this process is the presentation of chemokines in gradients stimulating leukocyte chemotaxis via cognate chemokine receptors. For efficient migration, receptor responsiveness must be maintained whilst the cells crawl on cell surfaces or on matrices along the attracting gradient towards increasing concentrations of agonist. On the other hand agonist-induced desensitization and internalization is a general paradigm for chemokine receptors which is inconsistent with the prolonged migratory capacity.</p> <h3>Methodology/Principal Findings</h3><p>Chemotaxis of monocytes was monitored in response to fluorescent CCL2-mCherry by time-lapse video microscopy. Uptake of the fluorescent agonist was used as indirect measure to follow the endogenous receptor CCR2 expressed on primary human monocytes. During chemotaxis CCL2-mCherry becomes endocytosed as cargo of CCR2, however, the internalization of CCR2 is not accompanied by reduced responsiveness of the cells due to desensitization.</p> <h3>Conclusions/Significance</h3><p>During chemotaxis CCR2 expressed on monocytes internalizes with the bound chemoattractant, but cycles rapidly back to the plasma membrane to maintain high responsiveness. Moreover, following relocation of the source of attractant, monocytes can rapidly reverse their polarization axis organizing a new leading edge along the newly formed gradient, suggesting a uniform distribution of highly receptive CCR2 on the plasma membrane. The present observations further indicate that during chemotaxis CCR2 acts as scavenger consuming the chemokine forming the attracting cue.</p> </div

    The 2017 May 20th^{\rm th} stellar occultation by the elongated centaur (95626) 2002 GZ32_{32}

    Full text link
    We predicted a stellar occultation of the bright star Gaia DR1 4332852996360346368 (UCAC4 385-75921) (mV_{\rm V}= 14.0 mag) by the centaur 2002 GZ32_{32} for 2017 May 20th^{\rm th}. Our latest shadow path prediction was favourable to a large region in Europe. Observations were arranged in a broad region inside the nominal shadow path. Series of images were obtained with 29 telescopes throughout Europe and from six of them (five in Spain and one in Greece) we detected the occultation. This is the fourth centaur, besides Chariklo, Chiron and Bienor, for which a multi-chord stellar occultation is reported. By means of an elliptical fit to the occultation chords we obtained the limb of 2002 GZ32_{32} during the occultation, resulting in an ellipse with axes of 305 ±\pm 17 km ×\times 146 ±\pm 8 km. From this limb, thanks to a rotational light curve obtained shortly after the occultation, we derived the geometric albedo of 2002 GZ32_{32} (pVp_{\rm V} = 0.043 ±\pm 0.007) and a 3-D ellipsoidal shape with axes 366 km ×\times 306 km ×\times 120 km. This shape is not fully consistent with a homogeneous body in hydrostatic equilibrium for the known rotation period of 2002 GZ32_{32}. The size (albedo) obtained from the occultation is respectively smaller (greater) than that derived from the radiometric technique but compatible within error bars. No rings or debris around 2002 GZ32_{32} were detected from the occultation, but narrow and thin rings cannot be discarded.Comment: Accepted for publication in MNRAS (8-Dec.-2020), 15 pages, 9 figure

    Migration of Th1 Lymphocytes Is Regulated by CD152 (CTLA-4)-Mediated Signaling via PI3 Kinase-Dependent Akt Activation

    Get PDF
    Efficient adaptive immune responses require the localization of T lymphocytes in secondary lymphoid organs and inflamed tissues. To achieve correct localization of T lymphocytes, the migration of these cells is initiated and directed by adhesion molecules and chemokines. It has recently been shown that the inhibitory surface molecule CD152 (CTLA-4) initiates Th cell migration, but the molecular mechanism underlying this effect remains to be elucidated. Using CD4 T lymphocytes derived from OVA-specific TCR transgenic CD152-deficient and CD152-competent mice, we demonstrate that chemokine-triggered signal transduction is differentially regulated by CD152 via phosphoinositide 3-kinase (PI3K)-dependent activation of protein kinase B (PKB/Akt). In the presence of CD152 signaling, the chemoattractant CCL4 selectively induces the full activation of Akt via phosphorylation at threonine 308 and serine 473 in pro-inflammatory Th lymphocytes expressing the cognate chemokine receptor CCR5. Akt signals lead to cytoskeleton rearrangements, which are indispensable for migration. Therefore, this novel Akt-modulating function of CD152 signals affecting T cell migration demonstrates that boosting CD152 or its down-stream signal transduction could aid therapies aimed at sensitizing T lymphocytes for optimal migration, thus contributing to a precise and effective immune response

    Mesenchymal Stem Cells Exhibit Firm Adhesion, Crawling, Spreading and Transmigration across Aortic Endothelial Cells: Effects of Chemokines and Shear

    Get PDF
    Mesenchymal stem cells (MSCs) have anti-inflammatory and immunosuppressive properties and may be useful in the therapy of diseases such as arteriosclerosis. MSCs have some ability to traffic into inflamed tissues, however to exploit this therapeutically their migratory mechanisms need to be elucidated. This study examines the interaction of murine MSCs (mMSCs) with, and their migration across, murine aortic endothelial cells (MAECs), and the effects of chemokines and shear stress. The interaction of mMSCs with MAECs was examined under physiological flow conditions. mMSCs showed lack of interaction with MAECs under continuous flow. However, when the flow was stopped (for 10min) and then started, mMSCs adhered and crawled on the endothelial surface, extending fine microvillous processes (filopodia). They then spread extending pseudopodia in multiple directions. CXCL9 significantly enhanced the percentage of mMSCs adhering, crawling and spreading and shear forces markedly stimulated crawling and spreading. CXCL9, CXCL16, CCL20 and CCL25 significantly enhanced transendothelial migration across MAECs. The transmigrated mMSCs had down-regulated receptors CXCR3, CXCR6, CCR6 and CCR9. This study furthers the knowledge of MSC transendothelial migration and the effects of chemokines and shear stress which is of relevance to inflammatory diseases such as arteriosclerosis
    corecore