257 research outputs found

    Injection of Human Bone Marrow and Mononuclear Cell Extract into Infarcted Mouse Hearts Results in Functional Improvement

    Get PDF
    Background: We have previously shown that mouse whole bone marrow cell (BMC) extract results in improvement of cardiac function and decreases scar size in a mouse model of myocardial infarction (MI), in the absence of intact cells. It is not clear if thes

    Targeted Drug Delivery by Gemtuzumab Ozogamicin: Mechanism-Based Mathematical Model for Treatment Strategy Improvement and Therapy Individualization

    Get PDF
    Gemtuzumab ozogamicin (GO) is a chemotherapy-conjugated anti-CD33 monoclonal antibody effective in some patients with acute myeloid leukemia (AML). The optimal treatment schedule and optimal timing of GO administration relative to other agents remains unknown. Conventional pharmacokinetic analysis has been of limited insight for the schedule optimization. We developed a mechanism-based mathematical model and employed it to analyze the time-course of free and GO-bound CD33 molecules on the lekemic blasts in individual AML patients treated with GO. We calculated expected intravascular drug exposure (I-AUC) as a surrogate marker for the response to the drug. A high CD33 production rate and low drug efflux were the most important determinants of high I-AUC, characterizing patients with favorable pharmacokinetic profile and, hence, improved response. I-AUC was insensitive to other studied parameters within biologically relevant ranges, including internalization rate and dissociation constant. Our computations suggested that even moderate blast burden reduction prior to drug administration enables lowering of GO doses without significantly compromising intracellular drug exposure. These findings indicate that GO may optimally be used after cyto-reductive chemotherapy, rather than before, or concomitantly with it, and that GO efficacy can be maintained by dose reduction to 6 mg/m2 and a dosing interval of 7 days. Model predictions are validated by comparison with the results of EORTC-GIMEMA AML19 clinical trial, where two different GO schedules were administered. We suggest that incorporation of our results in clinical practice can serve identification of the subpopulation of elderly patients who can benefit most of the GO treatment and enable return of the currently suspended drug to clinic

    Correlates of preclinical cardiovascular disease in Indigenous and Non-Indigenous Australians: a case control study

    Get PDF
    Background. The high frequency of premature death from cardiovascular disease in indigenous Australians is often attributed to the high prevalence of risk factors, especially type II diabetes mellitus (DM). We evaluated the relationship of ethnicity to atherosclerotic burden, as evidenced by carotid intima-media thickness (IMT), independent of risk factor status. Methods. We studied 227 subjects (147 men; 50 ± 13 y): 119 indigenous subjects with (IDM, n = 54), and without DM (InDM, n = 65), 108 Caucasian subjects with (CDM, n = 52), and without DM (CnDM, n = 56). IMT was measured according to standard methods and compared with clinical data and cardiovascular risk factors. Results. In subjects both with and without DM, IMT was significantly greater in indigenous subjects. There were no significant differences in gender, body mass index (BMI), systolic blood pressure (SBP), or diastolic blood pressure (DBP) between any of the groups, and subjects with DM showed no difference in plasma HbA1c. Cardiovascular risk factors were significantly more prevalent in indigenous subjects. Nonetheless, ethnicity (β = -0.34; p < 0.0001), age (β = 0.48; p < 0.0001), and smoking (β = 0.13; p < 0.007) were independent predictors of IMT in multiple linear regression models. Conclusion. Ethnicity appears to be an independent correlate of preclinical cardiovascular disease, even after correction for the high prevalence of cardiovascular risk factors in indigenous Australians. Standard approaches to control currently known risk factors are vital to reduce the burden of cardiovascular disease, but in themselves may be insufficient to fully address the high prevalence in this population

    Radio-to-\u3b3-ray monitoring of the narrow-line Seyfert 1 galaxy PMN J0948 + 0022 from 2008 to 2011

    Get PDF
    We present more than three years of observations at different frequencies, from radio to high-energy \u3b3-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948 + 0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of \u3b3-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948 + 0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at \u3b3-rays of the order of 1048 erg s-1, at the level ofpowerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (\u3b3-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of \u3b3-ray spectra before and including 2011 data suggested that there was a softening of the high-energy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at \u3b3-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at \u3b3-rays is 2.3 \ub1 0.5 days. These small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources

    Regional myocardial function after intracoronary bone marrow cell injection in reperfused anterior wall infarction - a cardiovascular magnetic resonance tagging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trials have brought diverse results of bone marrow stem cell treatment in necrotic myocardium. This substudy from the Autologous Stem Cell Transplantation in Acute Myocardial Infarction trial (ASTAMI) explored global and regional myocardial function after intracoronary injection of autologous mononuclear bone marrow cells (mBMC) in acute anterior wall myocardial infarction treated with percutaneous coronary intervention.</p> <p>Methods</p> <p>Cardiovascular magnetic resonance (CMR) tagging was performed 2-3 weeks and 6 months after revascularization in 15 patients treated with intracoronary stem cell injection (mBMC group) and in 13 controls without sham injection. Global and regional left ventricular (LV) strain and LV twist were correlated to cine CMR and late gadolinium enhancement (LGE).</p> <p>Results</p> <p>In the control group myocardial function as measured by strain improved for the global LV (6 months: -13.1 ± 2.4 versus 2-3 weeks: -11.9 ± 3.4%, p = 0.014) and for the infarct zone (-11.8 ± 3.0 versus -9.3 ± 4.1%, p = 0.001), and significantly more than in the mBMC group (inter-group p = 0.027 for global strain, respectively p = 0.009 for infarct zone strain). LV infarct mass decreased (35.7 ± 20.4 versus 45.7 ± 29.5 g, p = 0.024), also significantly more pronounced than the mBMC group (inter-group p = 0.034). LV twist was initially low and remained unchanged irrespective of therapy.</p> <p>Conclusions</p> <p>LGE and strain findings quite similarly demonstrate subtle differences between the mBMC and control groups. Intracoronary injection of autologous mBMC did not strengthen regional or global myocardial function in this substudy.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00199823">NCT00199823</a></p

    Diversity of a cytokinin dehydrogenase gene in wild and cultivated barley

    Get PDF
    The cytokinin dehydrogenase gene HvCKX2.1 is the regulatory target for the most abundant heterochromatic small RNAs in drought-stressed barley caryopses. We investigated the diversity of HvCKX2.1 in 228 barley landraces and 216 wild accessions and identified 14 haplotypes, five of these with ten or more members, coding for four different protein variants. The third largest haplotype was abundant in wild accessions (51 members), but absent from the landrace collection. Protein structure predictions indicated that the amino acid substitution specific to haplotype 3 could result in a change in the functional properties of the HvCKX2.1 protein. Haplotypes 1–3 have overlapping geographical distributions in the wild population, but the average rainfall amounts at the collection sites for haplotype 3 plants are significantly higher during November to February compared to the equivalent data for plants of haplotypes 1 and 2. We argue that the likelihood that haplotype 3 plants were excluded from landraces by sampling bias that occurred when the first wild barley plants were taken into cultivation is low, and that it is reasonable to suggest that plants with haplotype 3 are absent from the crop because these plants were less suited to the artificial conditions associated with cultivation. Although the cytokinin signalling pathway influences many aspects of plant development, the identified role of HvCKX2.1 in the drought response raises the possibility that the particular aspect of cultivation that mitigated against haplotype 3 relates in some way to water utilization. Our results therefore highlight the possibility that water utilization properties should be looked on as a possible component of the suite of physiological adaptations accompanying the domestication and subsequent evolution of cultivated barley

    DreamTel; Diabetes risk evaluation and management tele-monitoring study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rising prevalence of type 2 diabetes underlines the importance of secondary strategies for the prevention of target organ damage. While access to diabetes education centers and diabetes intensification management has been shown to improve blood glucose control, these services are not available to all that require them, particularly in rural and northern areas. The provision of these services through the Home Care team is an advance that can overcome these barriers. Transfer of blood glucose data electronically from the home to the health care provider may improve diabetes management.</p> <p>Methods and design</p> <p>The study population will consist of patients with type 2 diabetes with uncontrolled A1c levels living on reserve in the Battlefords region of Saskatchewan, Canada. This pilot study will take place over three phases. In the first phase over three months the impact of the introduction of the Bluetooth enabled glucose monitor will be assessed. In the second phase over three months, the development of guidelines based treatment algorithms for diabetes intensification will be completed. In the third phase lasting 18 months, study subjects will have diabetes intensification according to the algorithms developed.</p> <p>Discussion</p> <p>The first phase will determine if the use of the Bluetooth enabled blood glucose devices which can transmit results electronically will lead to changes in A1c levels. It will also determine the feasibility of recruiting subjects to use this technology. The rest of the Diabetes Risk Evaluation and Management Tele-monitoring (DreamTel) study will determine if the delivery of a diabetes intensification management program by the Home Care team supported by the Bluetooth enabled glucose meters leads to improvements in diabetes management.</p> <p>Trial Registration</p> <p>Protocol NCT00325624</p

    Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome

    Get PDF
    Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation

    Phylogeny of Echinoderm Hemoglobins

    Get PDF
    Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates
    corecore