15 research outputs found

    Incidence of post myocardial infarction left ventricular thrombus formation in the era of primary percutaneous intervention and glycoprotein IIb/IIIa inhibitors. A prospective observational study

    Get PDF
    BACKGROUND: Before the widespread use of primary percutaneous coronary intervention (PCI) and glycoprotein IIb/IIIa inhibitors (GP IIb/IIIa) left ventricular (LV) thrombus formation had been reported to complicate up to 20% of acute myocardial infarctions (AMI). The incidence of LV thrombus formation with these treatment modalities is not well known. METHODS: 92 consecutive patients with ST-elevation AMI treated with PCI and GP IIb/IIIa inhibitors underwent 2-D echocardiograms, with and without echo contrast agent, within 24–72 hours. RESULTS: Only 4/92 (4.3%) had an LV thrombus, representing a significantly lower incidence than that reported in the pre-PCI era. Use of contrast agents did not improve detection of LV thrombi in our study. CONCLUSION: The incidence of LV thrombus formation after acute MI, in the current era of rapid reperfusion, is lower than what has been historically reported

    Head to head comparisons of two modalities of perfusion adenosine stress echocardiography with simultaneous SPECT

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Real-time perfusion (RTP) contrast echocardiography can be used during adenosine stress echocardiography (ASE) to evaluate myocardial ischemia. We compared two different types of RTP power modulation techniques, angiomode (AM) and high-resolution grayscale (HR), with <sup>99m</sup>Tc-tetrofosmin single-photon emission computed tomography (SPECT) for the detection of myocardial ischemia.</p> <p>Methods</p> <p>Patients with known or suspected coronary artery disease (CAD), admitted to SPECT, were prospectively invited to participate. Patients underwent RTP imaging (SONOS 5500) using AM and HR during Sonovue<sup>® </sup>infusion, before and throughout the adenosine stress, also used for SPECT. Analysis of myocardial perfusion and wall motion by RTP-ASE were done for AM and HR at different time points, blinded to one another and to SPECT. Each segment was attributed to one of the three main coronary vessel areas of interest.</p> <p>Results</p> <p>In 50 patients, 150 coronary areas were analyzed by SPECT and RTP-ASE AM and HR. SPECT showed evidence of ischemia in 13 out of 50 patients. There was no significant difference between AM and HR in detecting ischemia (p = 0.08). The agreement for AM and HR, compared to SPECT, was 93% and 96%, with Kappa values of 0.67 and 0.75, respectively (p < 0.001).</p> <p>Conclusion</p> <p>There was no significant difference between AM and HR in correctly detecting myocardial ischemia as judged by SPECT. This suggests that different types of RTP modalities give comparable data during RTP-ASE in patients with known or suspected CAD.</p

    Quantitative detection of myocardial ischaemia by stress echocardiography; a comparison with SPECT

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>Real-time perfusion (RTP) adenosine stress echocardiography (ASE) can be used to visually evaluate myocardial ischaemia. The RTP power modulation technique angio-mode (AM), provides images for off-line perfusion quantification using Qontrast<sup>® </sup>software, generating values of peak signal intensity (A), myocardial blood flow velocity (β) and myocardial blood flow (Axβ). By comparing rest and stress values, their respective reserve values (A-r, β-r, Axβ-r) are generated. We evaluated myocardial ischaemia by RTP-ASE Qontrast<sup>® </sup>quantification, compared to visual perfusion evaluation with <sup>99m</sup>Tc-tetrofosmin single-photon emission computed tomography (SPECT).</p> <p>Methods and Results</p> <p>Patients admitted to SPECT underwent RTP-ASE (SONOS 5500) using AM during Sonovue<sup>® </sup>infusion, before and throughout adenosine stress, also used for SPECT. Visual myocardial perfusion and wall motion analysis, and Qontrast<sup>® </sup>quantification, were blindly compared to one another and to SPECT, at different time points off-line.</p> <p>We analyzed 201 coronary territories (left anterior descendent [LAD], left circumflex [LCx] and right coronary [RCA] artery territories) in 67 patients. SPECT showed ischaemia in 18 patients and 19 territories. Receiver operator characteristics and kappa values showed significant agreement with SPECT only for β-r and Axβ-r in all segments: area under the curve 0.678 and 0.665; P < 0.001 and < 0.01, respectively. The closest agreements were seen in the LAD territory: kappa 0.442 for both β-r and Axβ-r; P < 0.01. Visual evaluation of ischaemia showed good agreement with SPECT: accuracy 93%; kappa 0.67; P < 0.001; without non-interpretable territories.</p> <p>Conclusion</p> <p>In this agreement study with SPECT, RTP-ASE Qontrast<sup>® </sup>quantification of myocardial ischaemia was less accurate and less feasible than visual evaluation and needs further development to be clinically useful.</p

    Common genetic variants contribute to risk of transposition of the great arteries

    Get PDF
    Rationale: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. Objective: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. Methods and Results: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. Conclusions: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus

    Knowledge-based 3D reconstruction of the right ventricle : comparison with cardiac magnetic resonance in adults with congenital heart disease

    No full text
    AIM: Assessment of right ventricular (RV) function is a challenge, especially in patients with congenital heart disease (CHD). The aim of the present study is to assess whether knowledge-based RV reconstruction, used in the everyday practice of an echo-lab for adult CHD in a tertiary referral center, is accurate when compared to cardiac magnetic resonance (CMR) examination. SUBJECTS AND METHODS: Adult patients who would undergo CMR for assessment of the RV were asked to undergo an echo of the heart for further knowledge-based reconstruction (KBR). Echocardiographic images were acquired in standard views using a predefined imaging protocol. RV volumes and ejection fraction (EF) calculated using knowledge-based technology were compared with the CMR data of the same patient. RESULTS: Nineteen consecutive patients with congenital right heart disease were studied. Median age of the patients was 28 years (range 46 years). Reconstruction was possible in 16 out of 19 patients (85%). RV volumes assessed with this new method were smaller than with CMR. Indexed end diastolic volumes were 114±17 ml vs 121±19 ml, P<0.05 and EFs were 45±8% vs 47±9%, P<0.05 respectively. The correlation between the methods was good with an intraclass correlation of 0.84 for EDV and 0.89 for EF, P value <0.001 in both cases. CONCLUSION: KBR enables reliable measurement of RVs in patients with CHDs and can be used in clinical practice for analysis of volumes and EFs

    Cardiac magnetic resonance findings predicting mortality in patients with pulmonary arterial hypertension : a systematic review and meta-analysis

    Get PDF
    OBJECTIVES: To provide a comprehensive overview of all reported cardiac magnetic resonance (CMR) findings that predict clinical deterioration in pulmonary arterial hypertension (PAH). METHODS: MEDLINE and EMBASE electronic databases were systematically searched for longitudinal studies published by April 2015 that reported associations between CMR findings and adverse clinical outcome in PAH. Studies were appraised using previously developed criteria for prognostic studies. Meta-analysis using random effect models was performed for CMR findings investigated by three or more studies. RESULTS: Eight papers (539 patients) investigating 21 different CMR findings were included. Meta-analysis showed that right ventricular (RV) ejection fraction was the strongest predictor of mortality in PAH (pooled HR 1.23 [95 % CI 1.07-1.41], p = 0.003) per 5 % decrease. In addition, RV end-diastolic volume index (pooled HR 1.06 [95 % CI 1.00-1.12], p = 0.049), RV end-systolic volume index (pooled HR 1.05 [95 % CI 1.01-1.09], p = 0.013) and left ventricular end-diastolic volume index (pooled HR 1.16 [95 % CI 1.00-1.34], p = 0.045) were of prognostic importance. RV and LV mass did not provide prognostic information (p = 0.852 and p = 0.983, respectively). CONCLUSION: This meta-analysis substantiates the clinical yield of specific CMR findings in the prognostication of PAH patients. Decreased RV ejection is the strongest and most well established predictor of mortality. KEY POINTS: • Cardiac magnetic resonance imaging is useful for prognostication in pulmonary arterial hypertension. • Right ventricular ejection fraction is the strongest predictor of mortality. • Serial CMR evaluation seems to be of additional prognostic importance. • Accurate prognostication can aid in adequate and timely intensification of PAH-specific therapy
    corecore