6,172 research outputs found
A reversible water-based electrostatic adhesive
\ua9 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. Commercial adhesives typically fall into two categories: structural or pressure sensitive. Structural glues rely on covalent bonds formed during curing and provide high tensile strength whilst pressure-sensitive adhesives use physical bonding to provide weaker adhesion, but with considerable convenience for the user. Here, a new class of adhesive is presented that is also reversible, with a bond strength intermediate between those of pressure-sensitive and structural adhesives. Complementary water-based formulations incorporating oppositely charged polyelectrolytes form electrostatic bonds that may be reversed through immersion in a low or high pH aqueous environment. This electrostatic adhesive has the advantageous property that it exhibits good adhesion to low-energy surfaces such as polypropylene. Furthermore, it is produced by the emulsion copolymerization of commodity materials, styrene and butyl acrylate, which makes it inexpensive and opens the possibility of industrial production. Bio-based materials have been also integrated into the formulations to further increase sustainability. Moreover, unlike other water-based glues, adhesion does not significantly degrade in humid environments. Because such electrostatic adhesives do not require mechanical detachment, they are appropriate for the large-scale recycling of, e.g., bottle labels or food packaging. The adhesive is also suitable for dismantling components in areas as varied as automotive parts and electronics
Photometric determination of thioglycolic acid in cosmetics by using a stopped-flow reverse flow-injection system and the formation of gold nanoparticles
III Encuentro sobre Nanociencia y Nanotecnología de Investigadores y Tecnólogos Andaluce
Kinetic study of the interaction of gold nanoparticles with thiol compounds: determination of n-acetylcysteine using light scattering detection
II Encuentro sobre nanociencia y nanotecnología de investigadores y tecnólogos de la Universidad de Córdoba. NANOUC
Detection and removal of dust artifacts in retinal images via sparse-based inpainting
Dust particle artifacts are present in all imaging modalities but have more adverse consequences in
medical images like retinal images. They could be mistaken as small lesions, such as microaneurysms.
We propose a method for detecting and accurately segmenting dust artifacts in retinal images based
on multi-scale template-matching on several input images and an iterative segmentation via an
inpainting approach. The inpainting is done through dictionary learning and sparse-based representation. The artifact segmentation is refined by comparing the original image to the initial restoration. On average, 90% of the dust artifacts were detected in the test images, with state-of-theart restoration results. All detected artifacts were accurately segmented and removed. Even the most challenging artifacts located on top of blood vessels were removed. Thus, ensuring the continuity of the retinal structures. The proposed method successfully detects and removes dust artifacts in retinal images, which could be used to avoid false-positive lesion detections or as an image quality criterion. An implementation of the proposed algorithm can be accessed and executed through a Code Ocean compute capsul
Successful management of peri-implantitis around short and ultrashort single-crown implants: a case series with a 3-year follow-up
Introduction and Aim. In case of peri-implantitis, resective surgery is contraindicated for short and ultrashort implants, limiting the treatment options to regenerative surgery or to implant removal. 'is retrospective case series presents the clinical and radiographic outcomes of a surgical regenerative procedure to treat peri-implantitis around short and ultrashort implants. Materials and Methods. The study is a retrospective evaluation of patients suffering from peri-implantitis and those who underwent access flap surgery, concomitant chemical and mechanical decontamination of implant surface, and bone grafting using a self-hardening mixture of bone substitutes and biphasic calcium sulfate. No membranes were applied to cover the grafting material, and primary tension-free closure was achieved. The retrospective protocol was reviewed and approved by the Ethics Committee for Clinical Sperimentation (CESC) of Verona and Rovigo, Italy (based in the University of Verona) (Prog. 1863CESC. Date of approval: 2018-07-04). Results. 15 patients (17 implants) have been diagnosed with peri-implantitis after a mean follow-up of 24 months after loading. Implant length was between 5 and 8 mm. 8 patients (10 implants) had a history of periodontitis. At baseline, the mean PD (probing pocket dept) at the deepest site was 8.12 mm, with an average mBI (modified bleeding index) of 2.35 and a mean BD (bone defect depth) of 3.04 mm. At the 3-year follow-up, the CSR was 100%, the mean mBI was 0.88 (average reduction: - 1.47), the mean PD was 3.35 mm (mean PD reduction: 4.77 mm), and the mean bone defect was reduced by 1.74 mm, with a mean bone fill of 55%. Conclusions. The results of the present case series suggest that if accurate surface decontamination is achieved, high survival rate and good clinical and radiographic results can be obtained after 3 years. However, only the histological examination could confirm the growth of new bone in direct contact with the implant surface or if the grafted material only fills the space left by the peri-implant defect
Linoleic Acid Improves Piezo2 Dysfunction in a Mouse Model of Angelman Syndrome
Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability and atypical behaviors. AS results from loss of expression of the E3 ubiquitin-protein ligase UBE3A from the maternal allele in neurons. Individuals with AS display impaired coordination, poor balance, and gait ataxia. PIEZO2 is a mechanosensitive ion channel essential for coordination and balance. Here, we report that PIEZO2 activity is reduced in Ube3a deficient male and female mouse sensory neurons, a human Merkel cell carcinoma cell line and female human iPSC-derived sensory neurons with UBE3A knock-down, and de-identified stem cell-derived neurons from individuals with AS. We find that loss of UBE3A decreases actin filaments and reduces PIEZO2 expression and function. A linoleic acid (LA)-enriched diet increases PIEZO2 activity, mechano-excitability, and improves gait in male AS mice. Finally, LA supplementation increases PIEZO2 function in stem cell-derived neurons from individuals with AS. We propose a mechanism whereby loss of UBE3A expression reduces PIEZO2 function and identified a fatty acid that enhances channel activity and ameliorates AS-associated mechano-sensory deficits
Linoleic acid improves PIEZO2 dysfunction in a mouse model of Angelman Syndrome
Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability and atypical behaviors. AS results from loss of expression of the E3 ubiquitin-protein ligase UBE3A from the maternal allele in neurons. Individuals with AS display impaired coordination, poor balance, and gait ataxia. PIEZO2 is a mechanosensitive ion channel essential for coordination and balance. Here, we report that PIEZO2 activity is reduced in Ube3a deficient male and female mouse sensory neurons, a human Merkel cell carcinoma cell line and female human iPSC-derived sensory neurons with UBE3A knock-down, and de-identified stem cell-derived neurons from individuals with AS. We find that loss of UBE3A decreases actin filaments and reduces PIEZO2 expression and function. A linoleic acid (LA)-enriched diet increases PIEZO2 activity, mechano-excitability, and improves gait in male AS mice. Finally, LA supplementation increases PIEZO2 function in stem cell-derived neurons from individuals with AS. We propose a mechanism whereby loss of UBE3A expression reduces PIEZO2 function and identified a fatty acid that enhances channel activity and ameliorates AS-associated mechano-sensory deficits.This work was supported by the Neuroscience Institute at UTHSC (Research Associate Matching Salary Support to J.L.), the Federico Baur endowed chair in Nanotechnology (to F.J.S.-V., 0020206BA1), a pilot research award from the Foundation for Prader-Willi Research (to L.T.R.), the Neuroscience Institute Research Supports Grant 2020 program (to V.V., and J.F.C.-M.), and the National Institutes of Health (R01GM133845 to V.V. and R01GM125629 to J.F.C.-M.)
Federated causal inference based on real-world observational data sources:Application to a SARS-CoV-2 vaccine effectiveness assessment
Introduction
Causal inference helps researchers and policy-makers to evaluate public health interventions. When comparing interventions or public health programs by leveraging observational sensitive individual-level data from populations crossing jurisdictional borders, a federated approach (as opposed to a pooling data approach) can be used. Approaching causal inference by re-using routinely collected observational data across different regions in a federated manner, is challenging and guidance is currently lacking. With the aim of filling this gap and allowing a rapid response in the case of a next pandemic, a methodological framework to develop studies attempting causal inference using federated cross-national sensitive observational data, is described and showcased within the European BeYond-COVID project.
Methods
A framework for approaching federated causal inference by re-using routinely collected observational data across different regions, based on principles of legal, organizational, semantic and technical interoperability, is proposed. The framework includes step-by-step guidance, from defining a research question, to establishing a causal model, identifying and specifying data requirements in a common data model, generating synthetic data, and developing an interoperable and reproducible analytical pipeline for distributed deployment. The conceptual and instrumental phase of the framework was demonstrated and an analytical pipeline implementing federated causal inference was prototyped using open-source software in preparation for the assessment of real-world effectiveness of SARS-CoV-2 primary vaccination in preventing infection in populations spanning different countries, integrating a data quality assessment, imputation of missing values, matching of exposed to unexposed individuals based on confounders identified in the causal model and a survival analysis within the matched population.
Results
The conceptual and instrumental phase of the proposed methodological framework was successfully demonstrated within the BY-COVID project. Different Findable, Accessible, Interoperable and Reusable (FAIR) research objects were produced, such as a study protocol, a data management plan, a common data model, a synthetic dataset and an interoperable analytical pipeline.
Conclusions
The framework provides a systematic approach to address federated cross-national policy-relevant causal research questions based on sensitive population, health and care data in a privacy-preserving and interoperable way. The methodology and derived research objects can be re-used and contribute to pandemic preparedness.</p
- …