194 research outputs found
Cherenkov-dE/dx-range measurements on cosmic ray iron group nuclei
A balloon experiment which combined a large area plastic detector unit with electronic dE/dx-C data is presented. The correlation of the electronic data with the range data of the plastic detector stack was achieved by rotating plastic detector disks which provided in this way the passive plastic detector with an incorporated time determination. The constant flux of cosmic ray particles with charge Z greater than two was used to gauge the time resolving system. Stopping cosmic ray iron group nuclei in the energy range 400 to 700 MeV/nuc are identified using their electronic scintillator and Cherenkov signals and their etch conelengths and range data. The precise knowledge of the particle's trajectory proposes refined pathlength corrections to the electronic data
Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are
studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet
events has been determined with the modified JADE jet algorithm as a function
of the jet resolution parameter and is compared with the predictions of Monte
Carlo models. In addition, the event rate is corrected for both hadronization
and detector effects and is compared with next-to-leading order QCD
calculations. A value of the strong coupling constant of alpha_s(M_Z^2)=
0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is
extracted. The systematic error includes uncertainties in the calorimeter
energy calibration, in the description of the data by current Monte Carlo
models, and in the knowledge of the parton densities. The theoretical error is
dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Measurements of transverse energy flow are presented for neutral current
deep-inelastic scattering events produced in positron-proton collisions at
HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to
2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the
hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in
the hadronic centre of mass frame and is studied as a function of Q^2, x, W and
pseudorapidity. A comparison is made with QCD based models. The behaviour of
the mean transverse energy in the central pseudorapidity region and an interval
corresponding to the photon fragmentation region are analysed as a function of
Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.
Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA
The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph
Hadron Production in Diffractive Deep-Inelastic Scattering
Characteristics of hadron production in diffractive deep-inelastic
positron-proton scattering are studied using data collected in 1994 by the H1
experiment at HERA. The following distributions are measured in the
centre-of-mass frame of the photon dissociation system: the hadronic energy
flow, the Feynman-x (x_F) variable for charged particles, the squared
transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a
function of x_F. These distributions are compared with results in the gamma^* p
centre-of-mass frame from inclusive deep-inelastic scattering in the
fixed-target experiment EMC, and also with the predictions of several Monte
Carlo calculations. The data are consistent with a picture in which the
partonic structure of the diffractive exchange is dominated at low Q^2 by hard
gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s
A precise measurement of the inclusive deep-inelastic e^+p scattering cross
section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and
3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in
1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The
double differential cross section, from which the proton structure function
F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is
measured with typically 1% statistical and 3% systematic uncertainties. The
measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise
continuously towards small x for fixed Q^2. The cross section data are combined
with published H1 measurements at high Q^2 for a next-to-leading order DGLAP
QCD analysis.The H1 data determine the gluon momentum distribution in the range
3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20
GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS
collaboration allows the strong coupling constant alpha_s and the gluon
distribution to be simultaneously determined. A value of alpha
_s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with
an additional theoretical uncertainty of about +-0.005, mainly due to the
uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table
Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant
Jet event rates in deep inelastic ep scattering at HERA are investigated
applying the modified JADE jet algorithm. The analysis uses data taken with the
H1 detector in 1994 and 1995. The data are corrected for detector and
hadronization effects and then compared with perturbative QCD predictions using
next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2)
is determined evaluating the jet event rates. Values of alpha_S(Q^2) are
extracted in four different bins of the negative squared momentum
transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the
renormalization group equation to these several alpha_S(Q^2) values results in
alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys.
J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD
With the H1 detector at the ep collider HERA, D* meson production cross
sections have been measured in deep inelastic scattering with four-momentum
transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88
GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe
the differential cross sections within theoretical and experimental
uncertainties. Using these calculations, the NLO gluon momentum distribution in
the proton, x_g g(x_g), has been extracted in the momentum fraction range
7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon
momentum fraction x_g has been obtained from the measured kinematics of the
scattered electron and the D* meson in the final state. The results compare
well with the gluon distribution obtained from the analysis of scaling
violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
- …