454 research outputs found

    Careers in family business: New avenues for careers and family business research in the 21st century

    Get PDF
    The purpose of our special issue is to demonstrate how a careers perspective can contribute to the study of family businesses and bring to light how the family business context extends and challenges career theories and concepts. Inspired by the studies in our special issue and our review of previous research, we propose a conceptual model that leverages the concept of family embeddedness and intertwines it with career processes and outcomes. Building on the family embeddedness perspective, we propose several avenues for future research for family business and career scholars

    Seabed images from Southern Ocean shelf regions off the northern Antarctic Peninsula and in the southeastern Weddell Sea

    Get PDF
    Recent advances in underwater imaging technology allow for the gathering of invaluable scientific information on seafloor ecosystems, such as direct in situ views of seabed habitats and quantitative data on the composition, diversity, abundance, and distribution of epibenthic fauna. The imaging approach has been extensively used within the research project DynAMo (Dynamics of Antarctic Marine Shelf Ecosystems) at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven (AWI), which aimed to comparatively assess the pace and quality of the dynamics of Southern Ocean benthos. Within this framework, epibenthic spatial distribution patterns have been comparatively investigated in two regions in the Atlantic sector of the Southern Ocean: the shelf areas off the northern tip of the Antarctic Peninsula, representing a region with above-average warming of surface waters and sea-ice reduction, and the shelves of the eastern Weddell Sea as an example of a stable high-Antarctic marine environment that is not (yet) affected by climate change. The AWI Ocean Floor Observation System (OFOS) was used to collect seabed imagery during two cruises of the German research vessel Polarstern, ANT-XXIX/3 (PS81) to the Antarctic Peninsula from January to March 2013 and ANT-XXXI/2 (PS96) to the Weddell Sea from December 2015 to February 2016. Here, we report on the image and data collections gathered during these cruises. During PS81, OFOS was successfully deployed at a total of 31 stations at water depths between 29 and 784 m. At most stations, series of 500 to 530 pictures ( >  15 000 in total, each depicting a seabed area of approximately 3.45 m2 or 2.3  ×  1.5 m) were taken along transects approximately 3.7 km in length. During PS96, OFOS was used at a total of 13 stations at water depths between 200 and 754 m, yielding series of 110 to 293 photos (2670 in total) along transects 0.9 to 2.6 km in length. All seabed images taken during the two cruises, including metadata, are available from the data publisher PANGAEA via the two persistent identifiers at https://doi.org/10.1594/PANGAEA.872719 (for PS81) and https://doi.org/10.1594/PANGAEA.862097 (for PS96)

    High Spatial Resolution Fast-Neutron Imaging Detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    Full text link
    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.Comment: Also published in JINST: http://www.iop.org/EJ/abstract/1748-0221/4/05/P0501

    Different brain areas require different analysis models: fMRI observations in Parkinson’s disease

    Get PDF
    Foreseeing how specific brain areas respond in time to a stimulus can be a prerequisite for a successfully conceived fMRI experiment. We demonstrate that in medicated Parkinson’s disease patients, putamen's activation peaks around the onset of tapping but does not persist throughout the tapping block, whereas sustained activation is observed in the motor cortex. Consequently, in the widely used tapping paradigm “On vs. Off L-DOPA”, the drug effect remains undetected if statistical analysis apply a block design instead of an event-related one. Ignoring this information can lead to fallacious conclusions which suggests using different models to investigate different brain regions

    Radiolysis of water ice in the outer solar system: Sputtering and trapping of radiation products

    Get PDF
    We performed quantitative laboratory radiolysis experiments on cubic water ice between 40 and 120 K, with 200 keV protons. We measured sputtering of atoms and molecules and the trapping of radiolytic molecular species. The experiments were done at fluences corresponding to exposure of the surface of the Jovian icy satellites to their radiation environment up to thousands of years. During irradiation, O2 molecules are ejected from the ice at a rate that grows roughly exponentially with temperature; this behavior is the main reason for the temperature dependence of the total sputtering yield. O2 trapped in the ice is thermally released from the ice upon warming; the desorbed flux starts at the irradiation temperature and increases strongly above 120 K. Several peaks in the desorption spectrum, which depend on irradiation temperature, point to a complex distribution of trapping sites in the ice matrix. The yield of O2 produced by the 200 keV protons and trapped in the ice is more than 2 orders of magnitude smaller than used in recent models of Ganymede. We also found small amounts of trapped H2O2 that desorb readily above 160 K.Fil: Bahr, D.A.. University of Virginia; Estados UnidosFil: Famá, M.. University of Virginia; Estados UnidosFil: Vidal, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Baragiola, Raul Antonio. University of Virginia; Estados Unido

    Mutational profiling of kinases in glioblastoma

    Get PDF
    Background: Glioblastoma is a highly malignant brain tumor for which no cure is available. To identify new therapeutic targets, we performed a mutation analysis of kinase genes in glioblastoma.Methods: Database mining and a literature search identified 76 kinases that have been found to be mutated at least twice in multiple cancer types before. Among those we selected 34 kinase genes for mutation analysis. We also included IDH1, IDH2, PTEN, TP53 and NRAS, genes that are known to be mutated at considerable frequencies in glioblastoma. In total, 174 exons of 39 genes in 113 glioblastoma samples from 109 patients and 16 high-grade glioma (HGG) cell lines were sequenced. Results: Our mutation analysis led to the identification of 148 non-synonymous somatic mutations, of which 25 have not been reported before in glioblastoma. Somatic mutations were found in TP53, PTEN, IDH1, PIK3CA, EGFR, BRAF, EPHA3, NRAS, TGFBR2, FLT3 and RPS6KC1. Mapping the mutated genes into known signaling pathways revealed that the large majority of them plays a central role in the PI3K-AKT pathway. Conclusions: The knowledge that at least 50% of glioblastoma tumors display mutational activation of the PI3K-AKT pathway should offer new opportunities for the rational development of therapeutic approaches for glioblastomas. However, due to the development of resistance mechanisms, kinase inhibition studies targeting the PI3K-AKT pathway for relapsing glioblastoma have mostly failed thus far. Other therapies should be investigated, targeting early events in gliomagenesis that involve both kinases and non-kinases

    GCH1 deficiency activates brain innate immune response and impairs tyrosine hydroxylase homeostasis

    Get PDF
    The Parkinson’s disease (PD) risk gene GTP cyclohydrolase 1 (GCH1) catalyzes the rate-limiting step in tetrahydrobiopterin (BH4) synthesis, an essential cofactor in the synthesis of monoaminergic neurotransmitters. To investigate the mechanisms by which GCH1 deficiency may contribute to PD, we generated a loss of function zebrafish gch1 mutant (gch1-/-), using CRISPR/Cas technology. gch1-/- zebrafish develop marked monoaminergic neurotransmitter deficiencies by 5 dpf, movement deficits by 8 dpf and lethality by 12 dpf. Tyrosine hydroxylase protein levels were markedly reduced without loss of ascending dopaminergic (DAergic) neurons. L-Dopa treatment of gch1-/- larvae improved survival without ameliorating the motor phenotype. RNAseq of gch1-/- larval brain tissue identified highly upregulated transcripts involved in innate immune response. Subsequent experiments provided morphological and functional evidence of microglial activation in gch1-/-. The results of our study suggest that GCH1 deficiency may unmask early, subclinical parkinsonism and only indirectly contribute to neuronal cell death via immune-mediated mechanisms. Our work highlights the importance of functional validation for GWAS risk factors and further emphasises the important role of inflammation in the pathogenesis of PD
    • …
    corecore