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Abstract

Background: Glioblastoma is a highly malignant brain tumor for which no cure is available. To identify new
therapeutic targets, we performed a mutation analysis of kinase genes in glioblastoma.

Methods: Database mining and a literature search identified 76 kinases that have been found to be mutated at
least twice in multiple cancer types before. Among those we selected 34 kinase genes for mutation analysis. We
also included IDH1, IDH2, PTEN, TP53 and NRAS, genes that are known to be mutated at considerable frequencies in
glioblastoma. In total, 174 exons of 39 genes in 113 glioblastoma samples from 109 patients and 16 high-grade
glioma (HGG) cell lines were sequenced.

Results: Our mutation analysis led to the identification of 148 non-synonymous somatic mutations, of which 25
have not been reported before in glioblastoma. Somatic mutations were found in TP53, PTEN, IDH1, PIK3CA, EGFR,
BRAF, EPHA3, NRAS, TGFBR2, FLT3 and RPS6KC1. Mapping the mutated genes into known signaling pathways revealed
that the large majority of them plays a central role in the PI3K-AKT pathway.

Conclusions: The knowledge that at least 50% of glioblastoma tumors display mutational activation of the PI3K-AKT
pathway should offer new opportunities for the rational development of therapeutic approaches for glioblastomas.
However, due to the development of resistance mechanisms, kinase inhibition studies targeting the PI3K-AKT pathway
for relapsing glioblastoma have mostly failed thus far. Other therapies should be investigated, targeting early events in
gliomagenesis that involve both kinases and non-kinases.
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Background
Cancer is a multi-step polygenic disease, caused by accu-
mulation of genetic alterations in oncogenes and/or tumor
suppressor genes resulting in neoplastic transformation.
After the first transforming somatic mutation was found in
the HRAS gene in human bladder cancer [1], transforming
somatic mutations have been identified in numerous genes
and in various types of malignant tumors. In the last dec-
ade, sequencing of the human genome and development of
high-throughput technologies have enabled the systematic
analysis of cancer genomes [2-11]. Genes encoding for ki-
nases were found to be overrepresented in the group of
cancer genes that have been found to be mutated [12].
Moreover, kinases represent effective therapeutic targets in
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various types of cancer [13-19]. The description of 518 pro-
tein kinases constituting the ‘kinome’ [20] enabled system-
atic mutation analysis of kinases in colon cancer [2,6], and
other types of cancer [4], including glioblastoma [5,21].
Glioblastoma is the most common malignant brain

tumor and has a poor prognosis. Therapeutic advances
have been made in the past decade with the addition of
temozolomide chemotherapy to maximal safe tumor re-
section and radiotherapy. However, median survival is still
limited to only 15 months in optimally treated patients
[22,23], and less than a year in the general population
[24]. Therefore, novel therapies are urgently needed. For
rational drug design, it is essential to unravel the under-
lying oncogenic mechanisms of glioblastoma. Different
genes have been found to be involved in glioblastoma, by
changes in expression, methylation, copy number alter-
ations or mutations. A number of kinases has been known
to be involved in glioblastoma by various mechanisms.
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A well-characterized mutation affects the protein kinase
EGFR and codes for a truncated constitutively activated
form which is known as EGFRvIII. In addition, amplifica-
tion and overexpression of EGFR are important in glio-
blastoma [25]. MET amplification [26], PIK3CA mutations
and amplification [7,10,11,26], ERBB2 mutations [10,11]
and amplification of CDK4 [11] and CDK6 [10,11,26,27]
have been implicated in glioblastoma. Other kinases are
found to be overexpressed in glioblastoma [28], including
the kinase WEE1 [29]. The question is whether other ki-
nases play a role as well by mutational activation in glio-
blastoma. We performed a mutation analysis including 34
kinase genes in 113 glioblastoma tumors and 16 high-
grade glioma (HGG) cell lines.

Methods
Selection of genes
A search strategy was performed by database mining for
kinase mutations in cancer in 2006. This search included
the OMIM (Online Mendelian Inheritance in Man) of
human genes and genetic disorders [30] and COSMIC
(Catalogue of Somatic Mutations in Cancer) [31] data-
bases. In addition, a literature search was performed using
the key words ‘kinase*’ and ‘mutation*’ in Pubmed. In
silico, 217 kinases were identified to be mutated in cancer
and 76 have been reported to contain non-synonymous
somatic mutations in at least two independent tumor
samples in the literature. We selected 34 of these 76 ki-
nases for mutation analysis. Reasons for selecting these
kinase genes were 1) they are known to be involved in
pathways that play a role in the development of glioblast-
oma, 2) many mutations in these kinase genes have been
reported in other cancer types and/or 3) there are small-
molecule drugs available for that kinase target (Table 1).
In addition, we included IDH1, IDH2, NRAS, PTEN and
TP53, genes known to be (relatively) frequently mutated
in glioblastoma [11]. Specifically, we examined 174 exons
in which mutations have been previously described for the
following genes: AKT2, ATM, ATR, BRAF, BRD2, DDR1,
DYRK2, EGFR, EPHA3, EPHA5, EPHA6, EPHB2, ERBB2,
ERBB4, FGFR1, FGFR2, FGFR3, FGFR4, FLT1, FLT3,
FRAP1, IDH1, IDH2, KDR, KIT, MAP2K4, MET, NRAS,
NTRK2, NTRK3, PAK4, PDGFRA, PDPK1, PIK3CA,
PTEN, RPS6KC1, STK11, TGFBR2 and TP53. In addition,
the complete coding sequence of AKT1 was sequenced in
this tumor set, and mutations were not found, as de-
scribed previously [32]. Furthermore, the molecular and
survival analysis of IDH1 and IDH2 were published previ-
ously [33,34].

Patients, tumor samples and DNA extraction
One hundred and thirteen fresh frozen glioblastoma sam-
ples were obtained from 109 patients from the tumor
bank maintained by the Departments of Neurosurgery
and Neuropathology at the Academic Medical Center
(Amsterdam, The Netherlands). All patients were adults
except one (age: 15 years). Both primary and secondary
glioblastoma were included in this analysis. Research was
performed on “waste” material and stored in a coded fash-
ion. Consent for this project was reviewed and waivered
by the Medical Ethics Review Committee of the Academic
Medical Center and University of Amsterdam (reference
number W14_224 # 14.17.0286). Consent for removal of
the tissue and its storage in the tumor bank for research
purposes was obtained and documented in the patient’s
medical chart. Tumor samples were included only if at
least 80% of the sample consisted of cancer cells, as veri-
fied by H&E staining. For all tumor samples matched
germline DNA from blood samples was available. Matches
between germline and tumor DNA were verified for all
samples by direct sequencing of 26 single nucleotide poly-
morphisms (SNPs) at 24 loci (data not shown).
In addition, 16 high-grade glioma cell lines were in-

cluded: the cell lines CCF-STTG1, Hs683, U87MG,
U118MG, U251MG, U373MG, T98G (ATCC, Middle-
sex, United Kingdom), GAMG (Deutsche Sammlung
von Mikroorganismen und Zellkulturen, Braunschweig,
Germany), SKMG-3 (a gift of Dr C.Y. Thomas, University of
Virginia Division of Hematology/Oncology, Charlottesville,
VA), D384MG, SF763 (gifts of Dr M.L. Lamfers,
Department of Neurosurgery, VU University, Amsterdam,
The Netherlands), SF126 (a gift of Dr C. Van Bree, Depart-
ment of Radiotherapy, Academic Medical Center) and the
xenograft cell line IGRG121 (a gift of Dr B. Geoerger, Insti-
tut Gustave Roussy, Villejuif, France). A58, A60 and Gli-6
cell lines were derived from our own laboratory [35,36].
Genomic DNA was isolated as previously described [21].

PCR and sequencing details
Polymerase chain reaction (PCR) and sequencing primers
were designed using Primer 3 and synthesized by Invitro-
genTM (Life Technologies, Paisley, UK). PCR primers were
designed to amplify the selected 174 exons and the flanking
intron sequences, including splicing donor and acceptor re-
gions of the genes (Additional file 1: Table S1). PCR prod-
ucts were approximately 400 bp in length with multiple
overlapping amplimers for larger exons. On each sample,
185 PCRs were performed in 384- and 96-well formats in 5
or 10 μl reaction volumes, respectively. PCR conditions
have been published previously [21]. Mutation Surveyor
(Softgenetics, State College, PA, USA) was used to analyzed
the sequencing data. Over 5,000 nucleotide changes were
identified during this initial screening. Changes previously
described as SNPs were excluded from further analyses. To
ensure that the observed mutations were not PCR or se-
quencing artifacts, amplicons including non-silent muta-
tions were independently re-amplified and re-sequenced in
the corresponding tumors. All verified changes were re-



Table 1 An overview of the 152 somatic mutations identified in 113 human glioblastoma samples and 16 high-grade glioma cell lines

GBM sample # IDH1 PTEN TP53 PIK3CA EGFR Other mutated genes

1 T R132H I162F H1047R† (CH5132799)

2 T R248W

4 T IVS5-1G > A

6 T IVS21-5C > A

8 T Y155C E68fs*54

9 T R132H V122fs*25, R280G delE110

13 T F83S

14 T C135Y, C238Y E545A† (CH5132799)

16 T* R132H I162F H1047R

18 T R132C Y220C, G245S

20 T C275Y

21 T T319fs*2 R248Q

24 T K13E

26 T M1V

27 T R88Q

28 T R132H R273C

29 T T125R

30 T E545K† (CH5132799)

34 T R132H P64fs*58

35 T R213W

37 T R47K E180K, Y220C

38 T R132H

43 T BRAF(V600E)† (sorafenib, vemurafenib)

45 T G132D

46 T S106R, D208Y

47 T Y46* R273C

49 T IVS8 + 1G > T

50 T L112P

51 T H1047L† (CH5132799)

53 T IVS3 + 1delGT NRAS(Q61L)† (MEK162)

55 T R130* C176*

56 T Q149* F134L
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Table 1 An overview of the 152 somatic mutations identified in 113 human glioblastoma samples and 16 high-grade glioma cell lines (Continued)

58 T D24G

59 T R273C

61 T S260fs*3

62 T R132H E286G, R306*

64 T P152S

65 T R132H N13del G118D

66 T R132G R248W

68 T R273C BRAF(K601E)† (sorafenib, vemurafenib)

69 T R175H

70 T S305fs*6

71 T K125E

73 T R132H R273H

74 T R132H

75 T Y46H P152L

76 T E866D† (lapatinib, vandetanib, AEE788)

78 T H179D

79 T R132H

81 T R132H V157F, R282W C420R

83 T BRAF(V600E)

84 T R132L Y236N

87 T G127R R158H FLT3(A627T)† (crenolanib, midostaurin)

88 T P248fs*5

89 T I253insSTOP

92 T L210Q (cetuximab, panitumumab)

93 T R282W H1047Y† (CH5132799)

96 T R132H K120E

97 T R248W

98 T IVS8-1G > A R213*

99 T R242* Y220C P589L† (cetuximab, panitumumab)

101 T IVS3 + 1G > T

102 T A597P† (cetuximab, panitumumab)

104 T Y336*
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Table 1 An overview of the 152 somatic mutations identified in 113 human glioblastoma samples and 16 high-grade glioma cell lines (Continued)

105 T IVS4-1G > C

106 T* IVS4-1G > C

107 T R130* G598V† (cetuximab, panitumumab)

108 T* R130* G598V

109 T R175H

111 T M1V

112 T R132H R175H

113 T R132H H168R

114 T I253S

115 T* R132H H168R

117 T P96L TGFBR2(A204D) (LY2157299, LY2424087, TR1)

118 T R132H M237I

Cell lines

Gli6 R130L E336*

SKMG3 R282W

T98G L42R M237I

U118 IVS8 + 1G > T R213Q

U251MG E242fs*15 R273H

U373MG E242fs*15 R273H

U87 IVS3 + 1G > T EPHA3(K500N) (KB004), RPS6KC1(Q741*)

SF126 G129R

SF-763 R158L

A58 T319fs*2 R248Q

A60 K13E

CCF-STTG1 L112R

D384 A159V

GAMG L265P

Hs683 R248Q

IGRG-121 Y225*

37 samples without mutation in sequenced genes are excluded from this table. Mutations depicted in bold are, to our knowledge, novel in cancer, mutations in italics have been reported in cancer but are novel
in glioblastoma.
*indicates recurrent tumor (16 T is recurrent glioblastoma of 1 T, 106 T is recurrent glioblastoma of 105 T, 108 T is recurrent glioblastoma of 107 T, 115 T is recurrent glioblastoma of 2 T). † denotes a (likely) activating
mutation. Known kinase inhibitors for that specific target or kinase region are shown between brackets (only shown at first occurence in table).
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Table 2 Baseline characteristics of 113 glioblastoma
patients. Data are mean (range), number (%) or median
(95% CI)

Characteristic Specification Outcome

Age Mean (range), in years 54 (15–81)

Irradiation dosage Mean (range), Gy 39 (0–88)

KPS Mean (range), in points 76 (50–90)

Gender Male 61 (56%)

Female 48 (44%)

Surgical procedure Gross total removal 62 (57%)

Biopsy or irradical resection 57 (43%)

Tumor occurrence Primary glioblastoma 94 (86%)

Secondary glioblastoma 15 (14%)

Recurrent tumor 8 (7%)

Overall survival* Median (95% CI), in days 252 (206–318)

Progression free survival* Median (95% CI), in days 131 (105–157)

Data are mean (range), number (%) or median (95% CI) *Survival data was
available for 98 glioblastoma patients.
Abbreviations: Gy, Gray; KPS, Karnofsky Performance Status.
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sequenced in parallel with the matched normal DNA from
blood samples to distinguish between somatic mutations
and SNPs not previously described.
In the present study, a total of 23,865 PCR products,

covering 9.5 Mb of tumor genomic DNA, were generated
and subjected to direct Sanger sequencing. Over 5,000 nu-
cleotide changes were identified during this initial screen-
ing. Changes previously described as SNPs, synonymous
changes and intronic changes not predicted to affect spli-
cing were excluded from further analyses. To ensure that
the remaining mutations were not PCR or sequencing ar-
tefacts, amplicons were independently re-amplified and
resequenced in the corresponding tumors. All confirmed
changes were resequenced in parallel with the matched
normal DNA to distinguish between somatic mutations
and SNPs not previously described. We used the COSMIC
database to investigate whether mutations found were
novel in cancer or glioblastoma.

Cloning
For cloning of the PCR products the pcDNA™3.3-TOPO®
TA Cloning Kit (Invitrogen) was used according to the
manufacturer’s guidelines. The TOPO ligation reaction
(containing 2 μl of fresh PCR product and 1 μl TOPO vec-
tor) was performed for 5 min at room temp. Competent
E. coli were transformed with the TOPO cloning reaction
and spread on a pre-warmed selective plate (ampicillin).
Plates were incubated at 37°C overnight. White colonies
were picked for PCR analysis and sequencing, using the
protocol described above.

Results and discussion
Clinical and histological characteristics of 109 glioblast-
oma patients from which 113 tumor samples were ex-
tracted are shown in Table 2. An overview of the 148
somatic mutations that we identified in these 113 human
glioblastoma samples and 16 high-grade glioma cell lines
is shown in Table 1. Somatic mutations were found in
TP53 (61 mutations), PTEN (39), IDH1 (20), PIK3CA (13),
EGFR (7), BRAF (3), EPHA3 (1), NRAS (1), TGFRB2 (1),
FLT3 (1) and RPS6KC1 (1). To our knowledge twenty-five
of these have not been described before in glioblastoma
and are highlighted in Table 1.

Overall
The observed mutation rate of all non-synonymous som-
atic mutations (13.2 mutations/Mb) was higher than the
expected ‘passenger’ mutation rate (P < 1×10−15, binomial
distribution) [37], indicating that most of these mutations
probably represent ‘driver’ mutations. In the sequenced
genes, 76 out of 113 (67%) glioblastoma tumors displayed
at least one somatic mutation; no mutation was identified
in 37 glioblastoma samples. In all cell lines at least one
mutation in TP53 or PTEN was found. The maximum
number of mutations in a single sample observed was
three, occurring in both tumor and cell line samples. Only
non-silent mutations were further investigated to determine
whether they were somatic or not. Differences in non-silent
mutation rate between untreated samples and recurrent
samples treated prior with temozolomide chemotherapy
were not found. Therefore, it is impossible to conclude
whether samples derived from patients that had been pre-
treated with temozolomide (n = 8) developed a hypermuta-
tor phenotype, as was described for other glioblastoma
samples after temozolomide treatment [5]. Remarkably, no
additional mutations were observed in the four recurrent
tumors compared to their primary glioblastomas, which
were both included in the mutation analysis.
Some of the mutations were probably present in a small

fraction of cancer cells [38,39]. Cloning of the PCR prod-
uct helped to confirm the mutation in all tested samples.
An example is shown in Figure 1. For some amplicons,
the PCR reaction failed twice, as occurred for example for
exon 4 of PTEN in the SKMG-3 cell line. This cell line is
known for a deletion containing exon 4 [40]. Hence, in
this case, the incapacity of amplification is probably
caused by the deletion.

Mutation prevalences of genes
For PIK3CA and PTEN the mutation frequencies are not
different from previous reports [41-43]. The mutation fre-
quencies of TP53 (46%) and IDH1 (17%) are higher than
previously reported in glioblastoma samples [10,41,42,44].
Fourteen % of the samples were from secondary glioblast-
oma, which is also higher than in the aforementioned
studies. Since TP53 and IDH1 mutations occur mostly in
secondary glioblastoma, the relatively high number of



Figure 1 Somatic mutation confirmed by cloning. A, chromatogram of matched normal blood sample; B, chromatogram of tumor sample;
C, chromatogram of cloned PCR product. Arrows indicate the location of missense somatic mutations. Numbers above the sequences are part of
the software output. PIK3CA, c.158A>G, p.M2V.Mutation prevalence of genes.
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secondary glioblastoma can explain the relatively high
number of TP53 and IDH1 mutations. Regarding TP53,
we identified seven samples with two mutations in
TP53. When corrected for mutated single samples, the
mutation percentage is 39%, still slightly higher than re-
ported. Mutation details for IDH1 have been published
separately [34,45]. In EGFR, the mutation frequency is
lower than reported previously, due to the fact that we
sequenced only exons belonging to the kinase domain,
whereas Lee et al. found mutations predominantly in
the extracellular domain [37,46]. No AKT1 mutations
were found, as described previously [32].
A new mutation hotspot, providing a novel therapeutic

target in a significant percentage of glioblastoma patients,
was not identified in the sequenced kinase genes. This
may be due to the limited number of kinases which was
sequenced in this project. However, other genome-wide
glioblastoma sequencing projects have not resulted in
the discovery of novel mutation hotspots in kinases ei-
ther [10,11,47]. This supports the theory that every can-
cer type may have its own mutated cancer candidate
genes, and only a few of these genes are shared by different
cancer types [48]. Furthermore, the mutations themselves,
rather than the genes, may be cancer-specific [9,10,44,45].
Therefore, we cannot exclude that other exons of the genes
may exhibit a more frequently mutated genotype. Notably,
glioblastomas exhibit a different mutation profile for some
genes as compared to other tumor types. For example, most
EGFR and ERBB2 mutations in lung cancer are found in the
kinase domain [49,50], and that is why we included those re-
gions in our study. However, recent studies show that these
genes are predominantly mutated in the extracellular do-
main in glioblastoma [10,46]. Some of the novel mutations
that we have found affect kinases, for example EPHA3, re-
cently demonstrated as a functional targetable receptor in
glioblastoma [51]. These are clearly amenable to pharmaco-
logic intervention and represent potential novel therapeutic
targets for glioblastoma.

Cell lines
Neither IDH1 nor PIK3CA mutations were found in any
of the cell lines examined. Compared to the mutation
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frequency (17% and 11%) that we found in 109 glioblast-
oma samples, the lack of IDH1 and PIK3CA mutations in
our panel of 16 HGG cell lines is remarkable. However,
currently available glioblastoma cells lines do not have
endogenous IDH1/2 mutations. Thus far, three anaplastic
glioma cell lines have been reported to have IDH1/2 muta-
tions [52-55]. However, the fact that there were no muta-
tions in the 16 established cell lines is not surprising,
because most lines are derived from glioblastomas and
most of these were probably primary glioblastoma, in
which IDH1/2 mutations are rare [6,44,45]. On the other
hand, glioblastoma cell lines with PIK3CA mutations have
been described [43].
Two cell lines generated from glioblastoma samples

included in our mutational screen were also subjected to
the mutation analysis we performed. Of note, both one
TP53 (R248Q) and two PTEN mutations (T319fs*2 and
K13E) in the cell lines were found in homozygosity,
whereas the same mutations in the corresponding ori-
ginal tumor were heterozygous. We included tumor
samples only if at least 80% of the sample consisted of
cancer cells, as verified by H&E staining. Therefore, we
considered the chance of contamination by normal brain
tissue to be small. As established cell lines derived from
glioblastoma resemble the original tumors in patients
poorly when compared at the level of DNA alterations
[35,56], we argue that one allele of the gene may have
been lost during the establishment of the cell lines or
during cell culture afterward.
One of the changes that was identified in EPHA3

(K500N), was previously reported by us [57], to occur in
the cell line U87MG, for which no matched normal tis-
sue is available. Therefore, the somatic status of this mu-
tation could not be ascertained. As the U87MG cell line
is widely used in basic glioblastoma research, our results
suggest that U87MG may not be a viable model for all
research proposes due to the EPHA3 mutation.

PIK3CA, PTEN in the PI3K-AKT pathway
Somatic mutations in PIK3CA have been found in vari-
ous tumor types, affecting particularly exons 9 and 20
and to a lesser extent exon 1. In our glioblastoma sam-
ples, twelve mutations were found in PIK3CA, five were
located in exon 1, two in exon 9 and three in exon 20.
One of the five mutations in exon 1 has not been re-
ported before in cancer.
PIK3CA and PTEN mutations were found mutually

exclusive in our glioblastoma samples, as was previously
observed in glioblastoma [58,59], and other tumor line-
ages [60,61]. This suggests that the mutations exert over-
lapping cellular functions. Indeed, both the lipid kinase
PI3K and the phosphatase PTEN act as central regula-
tors of the PI3K-AKT pathway by controlling the cellular
levels of phosphatidylinositol-3-phosphate. Activating
mutations in the PIK3CA oncogene result in increased
PI3K catalytic activity and constitutive downstream sig-
naling. In contrast, the tumor suppressor protein PTEN
counteracts the effect of PI3K and acts as a negative
regulator of PI3K signaling [62]. Consequently, inactivat-
ing mutations in PTEN also result in constitutive down-
stream signalling of the PI3K-AKT pathway.
In our limited analysis, we found most mutations in

genes to belong to the PI3K-AKT pathway; mutational ac-
tivation of this pathway was observed in at least 50% of
glioblastomas, similar to findings in other studies [48,63].
Whole-genome sequencing efforts also studied non-
kinase genes in this pathway (NF1) and thus revealed an
even higher percentage (~90%) [11]. This indicates that
the PI3K-AKT pathway represents an interesting thera-
peutic target for glioblastomas. However, the results of
most clinical trials with (kinase) inhibitors interfering in
this pathway have been disappointing thus far [25,64-66].
As many glioblastoma have an activating EGFR muta-

tion [10,11,46], the first clinical studies with EGFR inhibi-
tors had high expectations [25]. However, the response to
EGFR inhibitors was found to be limited to only 15-20%
of glioblastoma patients with activating EGFR mutations
[42,67-69]. The partial response is likely caused by other
molecular events downstream of EGFR, leading to simul-
taneous activation of downstream effectors. For example,
the oncogenic PI3K-AKT signaling pathway is activated in
15% of glioblastoma via activating mutations in the
PIK3CA oncogene [11] and in 36% of glioblastoma via
mutationally or transcriptionally inactivated PTEN [11].
As a result, the limited response of therapeutic EGFR in-
hibition was thought to be neutralized by loss of PTEN.
This explains the correlation observed between the re-
sponse to EGFR inhibitors and the co-expression of
EGFRvIII and PTEN proteins [37,42,70] or phosphory-
lated AKT [71]. PTEN-deficient glioblastoma patients
were expected to respond to a cocktail of drugs consisting
of an EGFR inhibitor and rapamycin [70], but the results
were not impressive either [72]. Rational drug design and
rationally designed clinical trials to test these drugs are
needed, because an almost infinite number of compounds
is currently available, and these can be tested in limitless
numbers of combinations. With genomics approaches,
discoveries of common features of different types of tu-
mors may lead to new therapeutic targets and drugs for
other tumor types as well [28,73,74].
These findings indicate that single-agent kinase inhib-

ition therapy is not sufficient to target the PI3K-AKT
pathway successfully. Similar negative findings have been
reported for single drug trials that target the ERK pathway
in colon carcinoma [75], where mechanistic studies have
shown that concomitant inhibition of other pathways, (i.e.
PI3K-AKT) is more effective in these patients [76]. Analo-
gous to such investigations, additional research efforts,
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such as ours, should pursue the discovery of other target-
able molecular alterations in glioblastoma, in order to
facilitate the development of multidrug trials that are less
likely to fail due to resistance mechanisms. Other kinases
were found to be important in glioblastoma as well and
may provide therapeutic options. Inhibition of the kinase
WEE1 has shown to sensitize glioblastoma to ionizing ra-
diation in vivo [29,77]. Other single-agent kinase therapies
targeting PDGFRA, MET and FGFR2/3 should be studied
as well [47]. However, the question has been raised
whether rational single-agent kinase inhibition treatment
will suffice in the treatment of glioblastoma. Multiple
pathways are altered in glioblastoma [10,11,28] by (epi)
genetic [10,11], transcriptional [78-80] and metabolic
mechanisms [10]. An important hallmark of glioblastoma
is intratumoral heterogeneity [38]. Thousands of clonal
mutations have been identified in glioblastomas, but, only
some are common [38], showing that the cancer pheno-
type iscomplex. Each tumor, and also each glioblastoma,
evolves as a result of stochastic and environmental pro-
cesses in different mutations [39]. As tumor cells contain
thousands of mutations, both ‘driver’ and ‘passenger’, that
affect many pathways [81], it may be impossible to target
these adequately [39]. Notably, the ‘passenger’ mutations,
most of the alterations, may not provide growth advantage
per se, but could cause resistance to therapy in a subset of
cells, which can dominate the tumor next. We, and others
[39], are convinced that the focus should be on targeting
early common alterations in glioblastoma. For example,
inaugural IDH1 mutations [28], causing metabolic alter-
ations, may be an interesting therapeutic target [52,82]. As
only a subset of glioblastoma has IDH1 mutations [45], for
IDH1 wild-type tumors other, perhaps metabolic [83,84],
therapies should be investigated.

Conclusion
In conclusion, molecular profiling of tumor genomes has
provided a comprehensive list of cancer genes and of the
signaling pathways they control. These efforts have,
amongst others, led to the discovery that glioblastomas har-
bor thousands of mutations whereas only some common
driver genes are involved. Extensive whole-genome sequen-
cing of glioblastoma has been performed in recent years
[11,47], but it has been calculated that the discovery of mo-
lecular alterations in GBM is nowhere near saturation as of
yet [85]. Whereas the present study did not reveal novel
mutational hotspots in kinases in glioblastoma, we did
observe a strong clustering of mutations in genes belonging
to the PI3K-AKT pathway. This pathway is more frequently
activated by genomic aberrations than any other signaling
pathway in many tumor types. However, due to the devel-
opment of resistance mechanisms, kinase inhibition studies
targeting the PI3K-AKT pathway for relapsing glioblastoma
have mostly failed thus far. Other therapies should be
investigated on targeting both kinases and non-kinases that
are involved in early events in gliomagenesis.

Additional file

Additional file 1: Table S1. Thirty-nine genes selected for mutation
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