251 research outputs found

    Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    Get PDF
    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests

    Aggregation of ecological indicators for mapping aquatic nature quality : overview of existing methods and case studies

    Get PDF
    Indicators for aquatic nature quality are calculated using ecological monitoring data from individual sampling stations. For reporting purposes, these results need to be aggregated and scaled up to higher levels (catchment area, country). This report provides an overview of different existing spatial aggregation methods for this purpose, including an evaluation of their suitability for aquatic ecological indicators. So-called „model-based„ methods, consisting of some sort of „kriging¿ step followed by calculation of the arithmetic mean, appeared to be the most appropriate. Application of these methods to multimetric indicators of aquatic macroinvertebrates in two Dutch subcatchment areas confirmed their suitability. However, the methods that were used were based on aggregation (using kriging) over Euclidian (straight), distances. It is recommended to conduct further research on the suitability of interpolation through stream networks, i.e., through the waterways themselves

    Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation

    Get PDF
    Cardiac transverse (t)-tubules are altered during disease and may be regulated by stretch-sensitive molecules. The relationship between variations in the degree and duration of load and t-tubule structure remains unknown, as well as its implications for local Ca2+-induced Ca2+ release (CICR). Rat hearts were studied after 4 or 8 weeks of moderate mechanical unloading [using heterotopic abdominal heart–lung trans-plantation (HAHLT)] and 6 or 10 weeks of pressure overloading using thoracic aortic constriction. CICR, cell and t-tubule structure were assessed using confocal-microscopy, patch-clamping and scanning ion conductance microscopy. Moderate unloading was compared with severe unloading [using heart-only transplantation (HAHT)]. Mechanical unloading reduced cardiomyocyte volume in a time-dependent manner. Ca2+ release synchronicity was reduced at 8 weeks moderate unloading only. Ca2+ sparks increased in frequency and duration at 8 weeks of moderate unloading, which also induced t-tubule disorganization. Overloading increased cardiomyocyte volume and disrupted t-tubule mor-phology at 10 weeks but not 6 weeks. Moderate mechanical unloading for 4 weeks had milder effects compared with severe mechanical unloading (37 % reduction in cell volume at 4 weeks compared to 56 % reduction after severe mechanical unloading) and did not cause depres-sion and delay of the Ca2+ transient, increased Ca2+ spark frequency or impaired t-tubule and cell surface structure. These data suggest that variations in chronic mechanical load influence local CICR and t-tubule structure in a time- and degree-dependent manner, and that physiologi-cal states of increased and reduced cell size, without pathological changes are possible

    A Novel Biosensor for Evaluation of Apoptotic or Necrotic Effects of Nitrogen Dioxide during Acute Pancreatitis in Rat

    Get PDF
    The direct and accurate estimation of nitric dioxide levels is an extremely laborious and technically demanding procedure in the molecular diagnostics of inflammatory processes. The aim of this work is to demonstrate that a stop-flow technique utilizing a specific spectroscopic biosensor can be used for detection of nanomolar quantities of NO2 in biological milieu. The use of novel compound cis-[Cr(C2O4)(AaraNH2)(OH2)2]+ increases NO2 estimation accuracy by slowing down the rate of NO2 uptake. In this study, an animal model of pancreatitis, where nitrosative stress is induced by either 3g/kg bw or 1.5 g/kg bw dose of l-arginine, was used. Biochemical parameters and morphological characteristics of acute pancreatitis were monitored, specifically assessing pancreatic acinar cell death mode, NO2 generation and cellular glutathione level. The severity of the process correlated positively with NO2 levels in pancreatic acinar cell cytosol samples, and negatively with cellular glutathione levels

    Rays, intrusive growth, and storied cambium in the inflorescence stems of Arabidopsis thaliana (L.) Heynh

    Get PDF
    Arabidopsis thaliana is a model plant used in analysis of different aspects of plant growth and development. Under suitable conditions, secondary growth takes place in the hypocotyl of Arabidopsis plants, a finding which helps in understanding many aspects of xylogenesis. However, not all developmental processes of secondary tissue can be studied here, as no secondary rays and intrusive growth have been detected in hypocotyl. However, results presented here concerning the secondary growth in inflorescence stems of Arabidopsis shows that both secondary rays and intrusive growth of cambial cells can be detected, and that, in the interfascicular regions, a storied cambium can be developed
    • …
    corecore