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Introduction

Antibiotic resistance of environmental bacteria, 
including bacteria dwelling in aquatic ecosystems, is 
a thoroughly investigated phenomenon (Baquero et al. 
2008; Martinez 2009). Due to increased antibiotic con-
sumption (ESAC-Net 2020; Roberts and Zembower 
2020), antibiotic resistance is considered emerging 
environmental contamination (Pruden et al. 2006). 
Natural waters can be reservoirs of autochthonous 
antibiotic-resistant bacteria (ARB) and could be addi-
tionally contaminated by antibiotics, ARB and anti-
biotic resistance genes (ARGs) due to human activities 
such as wastewater effluents discharge, aquaculture, 
or agriculture (Berglund 2015). Antibiotic resistance 
determinants may not be removed entirely in water 
treatment plants (WTPs) and can enter distribution 
systems. Although tap water is commonly considered 
drinking water in many countries, knowledge regarding 

ARB biodiversity in drinking water distribution sys-
tems (DWDSs) is still scarce.

Bai et al. (2015) found antibiotic-resistant Bacillus 
sp., Sinorhizobium sp., Bradyrhizobiaceae sp., Coma-
monadaceae sp., Enterobacter hormaechei, Sphingo-
monas sp., Enterobacter sp., and Ensifer sp. in finished 
water at WTP in Shanghai, China. Antibiotic-resistant 
Proteobacteria were frequently isolated from tap water 
in Porto, Portugal (Vaz-Moreira et al. 2011; 2012; 2017; 
Figueira et al. 2012; Narciso-da-Rocha et al. 2013; 
2014). Furthermore, antibiotic-resistant Pseudomonas 
spp. were found in tap water produced from a karstic 
springs system during turbid events in Le Havre, France 
(Flores-Ribeiro et al. 2014). Khan et al. (2016a; 2016b) 
isolated antibiotic and disinfectant resistant Paeniba-
cillus, Burkholderia, Escherichia, Sphingomonas, and 
Dermacoccus representatives and other bacteria pos-
sessing ARGs from tap water in Glasgow, Scotland. 
Antibiotic-resistant Methylobacterium spp. were found 
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in a nation-wide study of hospital tap water in Japan 
(Furuhata et al. 2006). Various ARB were identified in 
tap water in Wrocław, Poland, in the previous study 
(Leginowicz et al. 2018). Moreover, Shi et al. (2013) 
found intestinal ARB in finished water and tap water 
in Nanjing, China. According to these reports, tap 
water bacteria’s antibiotic resistance can be regarded 
as a global problem that requires further research. Even 
if most tap water bacteria remain unculturable, culture-
dependent methods should not be neglected because 
they could broaden the current state of knowledge 
regarding environmental ARB.

Resistance dissemination could be facilitated by 
horizontal gene transfer (HGT) within water supply 
networks (Shi et al. 2013; Ma et al. 2017). Moreover, 
subinhibitory concentrations of disinfectants were 
revealed to enhance the intra-genus conjugation trans-
fer of genes (Zhang et al. 2017), suggesting the poten-
tial spread of antibiotic resistance in suboptimally 
chlorinated drinking water. Other findings indicated 
the critical role of vertical gene transfer (VGT) in this 
phenomenon because some ARB’s resistance patterns 
were revealed to be species-specific (Vaz-Moreira et al. 
2011; 2012; Narciso-da-Rocha et al. 2013; 2014).

The influence of ARB from drinking water on 
consumer health is still unclear and requires further 
investigation (Vaz-Moreira et al. 2014; Sanganyado 
and Gwenzi 2019). Swallowed bacteria have been 
determined to exchange genes with human intestinal 
microflora (Salyers et al. 2004). Moreover, Khan et al. 
(2020) have recently confirmed the possibility of dis-
seminating the mcr-1 gene, known as the last resort 
ARGs, from drinking water to the healthy mouse gut.

Next to being resistant to antibiotics, bacteria dwell-
ing in drinking water have been reported to be chlorine 
or monochloramine tolerant (Shrivastava et al. 2004; 
Furuhata et al. 2007; Chiao et al. 2014; Khan et al. 
2016a). Like antibiotic resistance, resistance to disin-
fectants could be facilitated by HGT (Stokes and Gill-
ings 2011). A risk of co-selection of ARB associated 
with drinking water chlorination has been suggested 
(Shi et al. 2013; Pruden 2014; Proctor and Hammes 
2015), although this hypothesis requires verification 
(Lin et al. 2016). Antibiotic and disinfectant suscepti-
bility testing of tap water bacteria could contribute to 
elucidating this issue.

This study’s objective was to investigate ARB dwell-
ing in bulk tap water supplied by two independent 
WTPs within one DWDS during the summer and 
winter seasons. Next to antibiotic resistance, the resist-
ance to disinfectants was tested. The resistance patterns 
of isolated strains were also compared with literature 
reports to gain a preliminary insight into resistance 
prevalence in tap water bacteria and expand knowl-
edge in this issue.

Experimental

Materials and Methods

DWDS, sample collection, and ARB cultivation. 
The DWDS in Wrocław, Poland, is primarily supplied 
by two independent WTPs: Na Grobli (NG) and Mokry 
Dwór (MD). Both WTPs (NG and MD) draw source 
water from the Oława and Nysa Kłodzka Rivers. In 
WTP NG, however, groundwater recharge is imple-
mented as the first step of treatment, resulting in water 
adopting groundwater properties. WTP NG consists 
of the following treatment processes: groundwater 
recharge, aeration, filtration, ozonation, adsorption 
on activated carbon, pH correction, and disinfection. 
WTP MD consists of the following treatment processes: 
coagulation, filtration, ozonation, adsorption on acti-
vated carbon, pH correction, and disinfection. In both 
WTPs, chlorine and chlorine dioxide are used for dis-
infection purposes; residual chlorine is also provided in 
the distribution system (Siedlecka et al. 2020b).

Finished water samples from both WTPs (NG1 
and MD1) and tap water samples from point-of-use 
taps, three in each WTP supply area (NG2, NG3, NG4 
and MD2, MD3, MD4), were collected twice a season 
(in July and August 2018 for summer and in January 
and February 2019 for winter), as described previously 
(Siedlecka et al. 2020b). The Municipal Water and Sew-
erage Company kindly provided free and total residual 
chlorine concentrations of each water sample.

Before sample collection, each tap was disinfected 
and flushed until the water temperature stabilized 
to avoid plumbing influence. Samples were collected 
in sterile, plastic containers, supplemented with 0.1 g/l 
sodium thiosulfate (Chempur) to neutralize the dis-
infectants (Vaz-Moreira et al. 2017), and immediately 
transported to the laboratory. Then, 1 l of each sample 
was divided into four, and each of 250 ml aliquots was 
concentrated by filtration through a mixed cellulose 
membrane of 0.2 μm pore diameter (Whatman) with 
the application of a sterile filtration set (Nalgene). Next, 
each membrane was placed on a plate of R2A (BTL) 
supplemented with an antibiotic (Sigma-Aldrich), 
prepared following guidelines (EUCAST 2020) as pre-
sented in Table I.

These antibiotics represent the groups of high con-
sumption rates in Poland (ESAC-Net 2020). Plates with 
membranes were incubated at 22°C for seven days. 
For quality control, Escherichia coli ATCC 25922 and 
Pseudomonas aeruginosa ATCC 27853 (BioMaxima) 
were inoculated on each prepared batch plates. Next, 
ARB representatives of different colony morphology 
(size, shape, color, opacity, surface, and texture) from 
various antibiotic supplemented plates, both WTPs and 
each sampling campaign, were selected.
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Molecular identification of strains. Each selected 
colony of ARB was subject to the streak-plate inocu-
lation technique to isolate the pure strain. The bacte-
ria were streaked on an R2A medium supplemented 
with the same antibiotic as previously incubated. The 
strains were Gram stained and observed under an opti-
cal microscope to confirm their purity, and apply the 
appropriate DNA extraction procedure. Next, genomic 
DNA was extracted with a Genomic Mini kit (A&A 
Biotechnology) under the manufacturer’s instruc-
tions, depending on Gram-staining results. DNA con-
centration and purity were measured on NanoPhoto- 
meter N60 (Implen).

Nearly full 16S rRNA gene was amplified with 
a  primer set 27F (AGAGTTTGATCMTGGCTCAG) 
and  1492R  (TACGGYTACCTTGTTACGACTT) 
(Siedlecka et al. 2020b). The PCR mixture consisted of: 
4 μl of 5 × Silver Hot Start PCR Mix (Synegn), 0.4 μl of 
each 10 μM primer, 2 μl of DNA, and 13.2 μl of water 
(A&A Biotechnology). Touchdown PCR protocol was 
as follows: initial denaturation at 95°C for 15 min, fol-
lowed by 25 cycles of denaturation at 95°C for 15 s, 
annealing at 55–50°C for 30 s, elongation at 72°C for 
60 s, and final elongation at 72°C for 7 min. Negative 
control was applied to confirm the lack of contamina-
tion in the reaction. After PCR amplification, 5 μl of 
each sample was mixed with 1 μl of 6x loading buffer 
(A&A Biotechnology) and separated by electrophoresis 
in 1% agarose gel (Sigma-Aldrich) stained with Green 
DNA Gel Stain (Syngen). The products were electro-
phoresed at 120 V for 15 min, and at 80 V for 60 min 
in 1 × TBE buffer and visualized by UV (UVITEC). 
The amplicon size was compared with DNA Marker 3 
(A&A Biotechnology). The remaining products were 
purified with Clean-up Concentrator (A&A Biotech-
nology) following the manufacturer’s instructions. The 
DNA concentration of the purified PCR products was 
determined using NanoPhotometer N60 (Implen) and 
subjected to Sanger sequencing (Genomed).

Sequences 27F and 1492R were subject to quality 
control and aligned with MEGA-X. The consensus of 
each aligned pair of strands was created with BioEdit. 
The obtained consensus sequences were identified with 
BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Antibiotic and disinfectant susceptibility testing. 
Before susceptibility testing, each strain was transfer- 
red to Mueller-Hinton (BioMaxima) agar plate to 
ensure adaptation to the richer medium. Eighteen 
antibiotics and two disinfectants were tested through 
the Kirby-Bauer disk diffusion method (antibiogram). 
The antibiograms were prepared in accordance with 
guidelines (EUCAST 2020). Briefly, fresh bacterial 
culture was suspended in sterile saline (0.89% NaCl, 
Chempur) to achieve turbidity of 0.5 McFarland stand-
ard (BioMerieux). Then, the suspension was inoculated 
on Mueller-Hinton by swabbing three times, every 
time turning the plate by 60 degrees. Next, the disks 
containing the antibiotics (BioMaxima) were placed 
on plates with inoculated bacteria utilizing a dispenser 
(BioMaxima). The antibiotics selected for testing 
included (abbreviation, disk content in µg): ampicillin 
(AM, 10), aztreonam (ATM, 30), ertapenem (ETP, 10), 
imipenem (IMP, 10) meropenem (MEM, 10), ofloxa-
cin (OFX, 5), cefotaxime (CTX, 5), cefepime (FEP, 30), 
doxycycline (DO, 30), oxytetracycline (T, 30), vanco- 
mycin (VA,  30), gentamycin (CN,  30), streptomy- 
cin (S,  300), sulphamethoxazole/trimethoprim (SXT, 
23.75/1.25), erythromycin (E, 15), rifampicin (RA, 5), 
chloramphenicol (C, 30), and polymyxin B (PB, 300). 
Sterile disks were simultaneously soaked in 14.5% 
sodium hypo chlorite (Chempur), commercial disin-
fectant Melsept (Braun) at the working solution, and 
sterile water as a  control and placed on plates with 
inoculated bacteria. All disks were placed within 15 min 
after inoculation of the strains on the plates. The plates 
were incubated at 22°C for 7 d due to the psychrophilic 
properties and prolonged growth of environmental 
bacteria. For quality control, E. coli ATCC 25922 and 
P. aeruginosa ATCC 27853 (BioMaxima) were subject 
to antibiotic susceptibility testing in the same man-
ner. Then, the diameter of the zone of inhibition was 
measured for each disk. Because the guidelines for 
inhibition zone data interpretation are provided only 
for clinically relevant species, the epidemiological cut-
off values (ECOFFs) taken from the EUCAST database 
(https://mic.eucast.org/Eucast2/SearchController/) 
were adopted for the purpose of differentiation on sus-
ceptible (criteria as for wild type) and resistant (criteria 

Amoxicillin (AML, 8 mg/l) Bacteria resistant to β-lactams
Ciprofloxacin (CIP, 2 mg/l) Bacteria resistant to fluoroquinolones
Ceftazidime (CAZ, 8 mg/l) Bacteria resistant to 3rd generation cephalosporins
Tetracycline (TE, 16 mg/l) Bacteria resistant to tetracyclines

Table I
R2A media supplementation for the cultivation of antibiotic-resistant

bacteria (ARB) (Siedlecka et al. 2020a; 2020b).

Antibiotic (abbreviation,
final concentration) ARB
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as for non-wild type) phenotypes. EUCAST provides 
different ECOFFs for various species. In this study, the 
lowest ECOFF among those proposed by EUCAST 
was adopted for each antibiotic to avoid resistant phe-
notypes’ overestimation. If no ECOFFs was provided 
in the EUCAST database, bacteria presenting inhibi-
tion zone diameter ≥ 10 mm were considered suscep-
tible. In the case of disinfectant susceptibility test- 
ing, the inhibition zone diameter ≤ 20 mm was adopted 
to consider bacteria to be resistant, as proposed by 
Khan et al. (2016a).

Minimal inhibitory concentration (MIC) testing. 
MIC testing was performed for four antibiotics repre-
sentative of the most commonly consumed groups of 
antibiotics in Poland (ESAC-Net 2020), namely AML, 
CIP, CAZ, and TE, and two of such antibiotics with 
additives, i.e., AML with clavulanic acid and CAZ with 
avibactam. For antibiotic resistance screening, each 
strain was inoculated on four R2A plates supplemented 
with antibiotics: AML, CIP, CAZ, and TE, as described 
in section 2.1. Only strains able to grow on R2A in the 
presence of a given antibiotic were subject to further 
MIC testing. The strains that did not grow on R2A 
plates supplemented with a given antibiotic (prepared 
as presented in Table I) were considered sensitive, and 
they were not subject to MIC testing.

Each antibiotic-resistant strain was inoculated on 
a  Mueller-Hinton plate, as described in section 2.3. 
Within 15 min, MIC strips (BioMaxima) were placed 
on the plates. The MIC strips included (abbreviation, 
concentration range in µg/ml): amoxicillin (AML, 
0.016–256), amoxicillin with clavulanic acid (AMC, 
0.016–256), ciprofloxacin (CIP, 0.002–32), ceftazi-
dime (CAZ, 0.016–256), ceftazidime with avibactam 
(CZA, 0.016–256), and tetracycline (TE, 0.016–256). 
The plates were incubated at 22°C for 7 d due to the 
psychrophilic properties and prolonged growth of envi-
ronmental bacteria. For quality control, E. coli ATCC 
25922 and P. aeruginosa ATCC 27853 (BioMaxima) 
were subject to MIC testing in the same manner.

Statistical analysis. The normality of data was 
verified using a Shapiro-Wilk test. A Mann-Whitney 
U-test was conducted to evaluate the effect of the season 
(summer and winter) or WTP (NG and MD) on the 
total number of antibiotics to which each strain was 
resistant, as well as on inhibition zones of chlorine and 
commercial disinfectant disk diffusion testing.

Correlations between the total number of antibiotics 
to which each strain was resistant, and MICs results, 
as well as inhibition zones of chlorine and commer-
cial disinfectant disk diffusion testing, were assessed 
using Spearman analysis. The significance level was set 
at p < 0.05 throughout the study. All statistical analy-
ses were done in Microsoft Excel software (Microsoft 
Office 365 ProPlus).

Results and Discussion

Antibiotic and disinfectant susceptibility test-
ing. As a result, 24 strains were isolated. The molecular 
identification of the strains, antibiotic and disinfectant 
susceptibility testing, and MIC testing are presented in 
Tables II, III, and IV, respectively. Free and total residual 
chlorine concentrations in collected tap water were in 
a range of 0.00 to 0.31 and 0.10 to 0.49 mg/l across the 
study, respectively. The data on the percentage of ARB in 
total bacteria, and other microbiological and physical-
chemical analyses of the collected tap water samples, 
have been previously published (Siedlecka et al. 2020b).

The majority of bacteria belonged to the phylum 
Proteobacteria (15/24), including classes Alphaproteo-
bacteria (13/24) and Betaproteobacteria (2/24). Repre-
sentatives of Bacteroidetes (4/24), Actinobacteria (4/24), 
and Firmicutes (1/24) were also found. Unfortunately, 
Caulobacter sp. was excluded from further analyses 
because the strain did not grow evenly on Mueller- 
Hinton medium. A similar problem with tap water bac-
teria cultivation was reported by Khan et al. (2016a).

Some strains were identified to the same genera 
or species. These isolates generally presented similar 
resistance patterns despite their origin from differ-
ent sampling points (Achromobacter sp., Mycobacte-
rium frederiksbergense) or sampling campaigns (Bosea 
massiliensis). However, both Sphinogomonas sp. isolates 
were obtained from the same sample, suggesting their 
affinity (the strains were primarily isolated on R2A 
medium supplemented with AML and CIP, respec-
tively). Interestingly, all Brevundimonas isolates were 
isolated from WTP NG finished water. Two of them, 
identified as Brevundimonas mediterranea, from the 
same sample, also suggested their affinity (the strains 
were primarily isolated on R2A medium supplemented 
with AML and CAZ antibiotics, respectively).

The results of statistical analyses revealed that nei-
ther seasonal nor WTP dependent variabilities were 
found in the total number of antibiotics to which each 
strain was resistant, and inhibition zones of chlorine 
and commercial disinfectant disk diffusion testing. 
Weak but statistically significant correlations were found 
between the total number of ineffective drugs and 
AML (rho = 0.45) and AMC (rho = 0.50) MIC results 
for strains subject to MIC testing.

Among the antibiotics tested by the disk diffusion 
method, ATM and CTX, belonging to monobactams 
and 3rd generation cephalosporins groups, respectively 
(WHO ATC Index (https://www.whocc.no/atc_ddd_
index/)), proved the least effective against the investi-
gated bacteria, whereas all strains were susceptible to 
IMP. Apart from IMP, other carbapenems were not as 
effective against investigated strains. Tetracycli nes and 
E also proved to be highly effective against tap water 
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bacteria in this study. Among the antibiotics tested by 
means of MIC, the least effective was CAZ, followed by 
AML, both belonging to β-lactam antibio tics (WHO 
ATC Index (https://www.whocc.no/atc_ddd_index/)). 
Interestingly, AML and CAZ MICs exceeded 256 mg/l 
for 7 and 15 strains, respectively, suggesting strong 
resistance of tap water bacteria to these antibiotics. 
Moreover, the results of MIC testing suggest that all 
but one (strain No. 14) strains tested for AML exhibit 
β-lactamase activity. The addition of clavulanic acid, 
known as a competitive inhibitor of β-lactamases (Kim 
et al. 2009), decreased effective drug concentration. 
Among strains tested for CAZ, 8 (i.e., strains No. 1, 
5, 6, 11, 12, 15, 16, and 20) proved to be sensitive to 
the avibactam additive, also suggesting β-lactamase 
activity (Wang et al. 2016). Nevertheless, the presence 
and activity of β-lac ta mases in the strains need to be 
confirmed by further studies. The majority of strains 

subject to AML or CAZ MIC testing (except for strains 
No. 15, 18, and 23) were resistant to at least one other 
antibiotic belonging to the β-lactam antibiotic class. 
All strains subject to CIP MIC testing were resistant to 
OFX, another representative of fluoroquinolones. Two 
strains resistant to TE (9 and 10) were also resistant 
to T and both tetracyclines used in the disk diffu-
sion method, respectively. Contrary to the presented 
results, aminopenicillins and aminoglycoside resistance 
were reported to be common in tap water bacteria in 
Porto, Portugal (Vaz-Moreira et al. 2011; 2012; 2017;  
Narciso-da-Rocha et al. 2013). The differences in resist-
ance of tap water bacteria in Wrocław and Porto could 
be region-dependent or taxon-dependent, because the 
other genera were investigated in these two DWDSs.

The majority of strains were resistant to 14.5% 
stan dard sodium hypochlorite, suggesting strong dis-
infectant resistance of tap water bacteria. However, no 

 1 MD4VII(AML) Chryseobacterium sp. 91.28% MK095762.1
 2 MD4VII(CIP) Bosea massiliensis 100.00% KM114964.1
 3 NG1VIII(CAZ) Mycobacterium frederiksbergense 99.55% LN613126.1
 4 NG1VIII(AML) Brevundimonas mediterranea 99.84% CP048751.1
 5 NG2VIII(CIP) Sphingomonas sanxanigenens 99.23% KY078833.1
 6 NG4VIII(CIP) Sphingomonas sp. 99.69% HM191725.1
 7 NG4VIII(AML) Sphingomonas sp. 99.77% HM191725.1
 8 MD2VIII(CIP) Dyadobacter sp. 98.78% MK271730.1
 9 MD4VIII(CIP) Microbacterium sp. 99.70% MT542332.1
10 MD4VIII(TE) Afipia sp. 99.54% MK402948.2
11 MD4VIII(CIP) Bosea massiliensis 99.69% MF101018.1
12 NG1I(AML) Brevundimonas mediterranea 99.69% CP048751.1
13 NG1I(CAZ) Brevundimonas mediterranea 99.84% CP048751.1
14 NG2I(CAZ) Nocardia asteroides 99.85% MT355847.1
15 NG2I(CAZ) Sphingobium abikonense 98.92% MK696981.3
16 NG3I(AML) Achromobacter sp. 99.39% KT826375.1
17 NG4I(AML) Pedobacter sp. 100% EF660750.1
18 NG4I(CAZ) Flavobacterium sp. 99.32% JQ977667.1
19 MD1I(CAZ) Bacillus zhangzhouensis 95.24% MG651160.1
20 MD3I(AML) Achromobacter sp. 94.86% KT826375.1
21 MD4I(CIP) Caulobacter sp. 97.92% KM252977.1
22 NG1II(CIP) Brevundimonas sp. 99.92% CP045456.1
23 NG3II(CAZ) Mycobacterium frederiksbergense 100% LN613126.1
24 MD3II(CAZ) Methylobacterium sp. 91.84% HM327817.1

Table II
Results of molecular identification of strains, % identity of sequence with the reference sequence

in the BLAST database, accession No. of the reference sequence.

* – sample collection site and month, where: NG refers to WTP Na Grobli, MD refers to WTP Mokry Dwór, 
Arabic numerals refer to consecutive sampling points (1 – finished water at each WTP, 2, 3, 4 – consecutive 
sampling points in the distribution system within each WTP supply area), Roman numerals refer to the month 
of sample collection, abbreviations in brackets refer to R2A media supplementation – the plate from which 
the strain was initially isolated. Strains are ordered by the month of collection.

Strain
No. Origin* Identification %

Identity Accession
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correlations were found between inhibition zones 
against each disinfectant and the total number of inef-
fective antibiotics, nor antibiotic MICs, contrary to the 
results of Khan et al. (2016a), who found weak (but 
significant) correlations between chlorine-tolerance 
and MIC against TE, sulphamethoxazole, and AML. 
Four strains (11, 19, 23, 24) resistant to 14.5% standard 
sodium hypochlorite were revealed to be susceptible to 
working solution of Melspet, suggesting that other anti-
microbial agents present in commercial composition 
disinfectant were more effective against tap water bac-
teria than chlorine. The disinfectant susceptibility test-
ing of the investigated strains suggests that resistance 
to strong chemical disinfectants is frequent among tap 

water ARB. An approach alternative to tap water chlo-
rination should be considered in the future. For exam-
ple, in some European WTPs, treatment is based on 
biofiltration without final disinfection or residual dis-
infectant use (Proctor and Hammes 2015). It remains 
unknown, however, whether this approach is successful 
in limiting ARB prevalence in tap water.

Methylobacterium sp. and Afipia sp. proved resistant 
to the highest total number of antibiotics tested in this 
study using the disk diffusion method. The MIC test-
ing results confirm the strong resistance of these two 
strains. On the other hand, M. frederiksbergense (strain 
No. 23) and Flavobacterium sp. were susceptible to 
all antibiotics tested with the disk diffusion method 

  1  •  •  •    •                          •  5  •  •
  2    •                  •                2  •  •
  3    •                                  1  •  •
  4  •  •  •      •  •  •            •          7  •  •
  5    •  •      •  •  •          •      •  •    8  •  •
  6  •  •  •      •  •          •  •  •    •      9  •  •
  7  •  •  •      •  •            •  •    •      8  •  •
  8    •        •  •  •      •  •              6  •  •
  9    •        •  •  •    •        •    •  •  •  9  •  •
10  •  •      •    •    •  •  •  •    •    •  •  •  12  •  •
11    •                                  1  • 
12  •  •        •  •  •                      5  •  •
13  •  •        •  •  •            •          6  •  •
14              •  •                •  •    4  •  •
15                                •    •  2
16  •            •          •        •      4  •  •
17  •  •        •  •        •  •            •  7  •  •
18                   0
19              •                        1  •
20  •            •          •        •      4  •  •
21 – – – – – – – – – – – – – – – – – – – – –
22    •        •  •              •          4  •  •
23                                      0  • 
24  •  •  •    •  •  •        •  •    •  •    •  •  12  •

Total 11 16 6 0 3 11 16 7 1 2 5 7 3 8 1 9 5 6

Table III
Results of antibiotic and disinfectant susceptibility testing.

• – resistant;  – – not included in the testing
Cl2 – 14.5% sodium hypochlorite;  D – commercial disinfectant
The abbreviations of antibiotics are explained in the Materials and Methods section.
Antibiotic groups are in accordance with ATC Classification System (WHO ATC Index).
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and resistant only to AML and CAZ. The majority of 
strains proved multi-drug resistant (MDR), i.e., they 
were resistant to three or more antibiotic groups (Fala-
gas and Karageorgopoulos 2008). The present study’s 
results seem to confirm MDR among bacteria dwell-
ing in tap water, reported previously (Vaz-Moreira et al. 
2011; 2012; Narciso-da-Rocha et al. 2014; Leginowicz 
et al. 2018). Among genera identified in this study, 
MDR isolates of Brevundimonas, Microbacterium, 
Pedobacter, Bosea, and Afipia were also found in bottled 
mineral water (Falcone-Dias et al. 2012). Interestingly, 
the resistance of bacteria belonging to these genera 
might have been acquired because taxonomically 
related strains isolated from various mineral water 
brands presented different resistance profiles (Falcone-
Dias et al. 2012).

Intra-genus and intra-specific variability in anti-
biotic resistance of environmental bacteria – compar-
ison of the obtained results with literature reports. 
Lack of guidelines for antibiotic susceptibility testing 
for environmental species makes the comparison of 
scientific reports complicated (Leginowicz et al. 2018). 

Nevertheless, the comparison of data presented in this 
paper with resistance patterns of bacteria belonging to 
the same genera or species reported previously in litera-
ture could shed new light on antibiotic resistance spread 
in environmental bacteria. Unless stated otherwise, this 
review concerns only drugs tested in this study.

Some data regarding the antibiotic resistance of 
representatives of genera Achromobacter, Chryseobacte-
rium, Pedobacter, and Microbacterium are available. Car-
bapenems and SXT have been claimed to be the most 
effective antibiotics against Achromobacter spp., oppor-
tunistic human pathogens (Almuzara et al. 2010). It is 
in accordance with the results presented in this paper. 
On the other hand, a literature review concerning gen-
era Chryseobacterium, Pedobacter, and Microbacterium 
reveals some discrepancies. Chryseobacterium spp. were 
reported to be inherently resistant to E, C, linezolid, 
polymyxins, aminoglycosides, tetracyclines, and many 
β-lactams, and intermediately sensitive to VA and 
clindamycin (Kirby et al. 2004; Loch and Faisal 2015), 
but susceptible to RA, CIP and SXT (Kirby et al. 2004; 
Chen et al. 2013b). Another study revealed that out of 

1 > 256 0.75 – 32 0.75 –
2 10 < 0.016 – 32 32 –
3 10 0.25 – > 256 > 256 –
4 > 256 2 4 > 256 > 256 –
5 16 0.5 > 32 > 256 < 0.016 –
6 96 1.5 12 10 < 0.016 –
7 24 8 4 – – –
8 10 0.047 > 32 > 256 > 256 –
9 – – 6 > 256 > 256 24
10 64 4 – > 256 > 256 > 256
11 – – – 10 0.38 –
12 > 256 2 – 96 64 –
13 > 256 1.5 – > 256 > 256 –
14 10 24 – > 256 > 256 –
15 10 0.5 – > 256 64 –
16 > 256 1.5 – 10 4 –
17 32 24 > 32 > 256 > 256 –
18 10 0.5 – > 256 > 256 –
19 – – – > 256 > 256 –
20 > 256 0.5 – 10 1 –
21 – – – – – –
22 10 0.125 4 > 256 > 256 –
23 12 1 – > 256 > 256 –
24 > 256 24 > 32 > 256 > 256 –

Table IV
Results of MIC testing (µg/ml).

– – not included in the testing (strain susceptible to the antibiotic)
The abbreviations of antibiotics are explained in the Materials and Methods section.

Strain No. AML AMC CIP CAZ CZA TE
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Chryseobacterium spp. isolates obtained from aquatic 
habitats, 97% were resistant to AM, 89% to PB, 62% to 
E, 54% to T, 21.5% to florfenicol, and 69% were sensi-
tive to SXT (Michel et al. 2005; Loch and Faisal 2015). 
Pedobacter spp. were considered environmental super-
bugs, probably intrinsically resistant to many antibiot-
ics and having β-lactamases. They have been reported 
to be resistant to AMC, AM, ATM, FEP, CAZ, C, CIP, 
CN, S, TE, and VA, but susceptible to IMP and SXT 
(Viana et al. 2018). Microbacterium spp. isolates have 
been reported to be resistant to CTX, CIP, DO, E, CN, 
RA, and VA (Gneiding et al. 2008). Findings regarding 
Chryseobacterium sp., Pedobacter sp., and Microbacte-
rium sp. presented in this study are, therefore, partially 
in contradiction with literature reports.

Some discrepancies are also found in resistance pat - 
terns of representatives of genera Dyadobacter and Fla vo-
bacterium. For example, Dyadobacter alkalitolerans first 
isolated from desert sand in China was susceptible to 
TE and RA, but resistant to AM, E, VA, and AML (Tang 
et al. 2009), and Dyadobacter arcticus first isolated from 
Arctic soil in Svalbard was susceptible to PB, TE, VA, 
CIP, OFX, S, and SXT, but resistant to AM, CN, and 
CAZ (Chen et al. 2013a). Flavobacterium psychrophilum 
isolates obtained from trout in Turkey demonstrated 
reduced susceptibility to T, but susceptibility to AML 
(Saticioglu et al. 2019). In contrast, Flavobacterium 
columnare isolates obtained from pound cultures in 
Nigeria proved resistant to S, T, C, OFX, CN, and AML, 
but susceptible to CIP and SXT (Ogbonne et al. 2019). 
Moreover, clinical isolates of Flavobacterium spp. were 
resistant to E (Aber et al. 1978). The resistance patterns 
of Dyadobacter sp. and Flavobacterium sp. isolates inves-
tigated in this study differ from those mentioned above.

Afipia sp. and Methylobacterium sp. were resistant 
to most of the antibiotics tested 0 in this study. Afipia 
spp. has been formerly isolated from tap water sam-
ples (Zhang et al. 2009). Within this genus, Afipia felis, 
a putative cat-scratch disease agent, has been suggested 
to be resistant to most antibiotics, remaining susceptible 
to aminoglycosides, IMP, RA, amikacin, and tobramycin 
(Maurin et al. 1993). Methylobacterium spp. isolates for-
merly proved resistant to AML, E, and C, but the major-
ity of them were susceptible to TE and CN (Hiraishi 
et al. 1995). On the other hand, Methylobacterium spp. 
isolates obtained from hospital tap water in Japan were 
resistant to AM, CN, E, VA, C, and OFX but susceptible 
to IMP and TE (Furuhata et al. 2006). Therefore, resist-
ance patterns of Afipia sp. and Methylobacterium sp. 
investigated in this study, and those reported previously 
in the literature show certain differences.

Sphingomonadaceae are common inhabitants of tap 
water. This family has been suggested to be intrinsically 
resistant to colistin. Resistance to fluoroquinolones, 
cephalosporins, and sulphonamides is possibly acquired 

in these bacteria (Vaz-Moreira et al. 2011; Narciso-da-
Rocha et al. 2014). The most antibiotic-resistant genera 
of the family Sphingomonadaceae proved to be Sphin-
gomonas and Sphingobium (Vaz-Moreira et al. 2011), 
both investigated in the present paper. Sphingomonas 
representatives have been reported to be resistant to 
IMP, MEM, FEP, CAZ, CIP, CN, and SXT, and Sphingo-
bium representatives to MEM, FEP, CAZ, CIP, CN, and 
SXT, respectively (moreover, resistance to β-lactams has 
been suggested to be intrinsic in genus Sphingobium) 
(Vaz-Moreira et al. 2011; Narciso-da-Rocha et al. 2014). 
The comparison of these resistance patterns with results 
presented in this paper, therefore, reveals some intra-
genus differences.

Some intra-specific variability in antibiotic resist-
ance was also observed based on the examples of the 
Sphingobium abikonense, Nocardia asteroides, and 
B. mas siliensis. S. abikonense was first isolated in India. 
Its resistance pattern differed from the results presented 
in this study in terms of AM, RA, and PB (Kumari et al. 
2009). The antibiotic resistance of Nocardia spp. has 
been suggested to be species-specific. Nevertheless, lin-
ezolid and SXT appear to be effective against this genus, 
although emerging resistance to SXT has also been 
reported (Schlaberg et al. 2014; Hashemi-Shahraki et al. 
2015; McTaggart et al. 2015; Zhao et al. 2017). N. aster-
oides isolates have formerly proved susceptible to SXT, 
MEM, CTX, and CN, but resistant or moderate-resistant 
to AMC, CIP, FEP, AM, VA, and RA; whereas resistance 
to IMP differed among the studies (Schlaberg et al. 2014; 
Hashemi-Shahraki et al. 2015; Zhao et al. 2017). In the 
present study, the resistance pattern of N. asteroides dif-
fered in terms of AM, CTX, VA, and CIP, suggesting 
intra-specific diversity of antibiotic resistance. Moreo-
ver, B. massiliensis first isolated from hospital tap water 
in France has been reported to be susceptible only to 
DO (La Scola et al. 2003) in contrary to results pre-
sented in this paper. Both B. massiliensis isolates inves-
tigated in this study were susceptible to most drugs 
(including DO), also suggesting intra-specific diversity.

Finally, some data regarding M. frederiksbergense, 
Brevundimonas, and Bacillus zhangzhouensis are also 
available. M. frederiksbergense was first isolated from soil 
in Denmark (Willumsen et al. 2001). This species has 
been confirmed to potentially lead to infection while 
being sensitive to drugs commonly used to treat 
non-tuberculous mycobacteria (Senozan et al. 2015). 
Brevundimonas spp. isolates were most frequently resis-
tant to AM, ATM, FEP, AMC, CIP, and CAZ, although 
other resistance patterns were also reported (Ryan and 
Pembroke 2018). Results presented in this paper gener-
ally appear to be in line with these reports. B. zhangzho-
uensis was first isolated from a shrimp farm in China. 
Unfortunately, no resistance pattern was described for 
this strain (Liu et al. 2016). The isolate investigated in 
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this study was only resistant to CTX and CAZ, both 
belonging to the 3rd generation cephalosporins group.

To sum up, the comparison of results presented in 
this paper with previous literature reports points to intra- 
genus differences in resistance patterns of tap water 
strains identified to the genus level in this study (Chry-
seo bacterium sp., Pedobacter sp., Microbacterium sp., 
Dyadobacter sp., Flavobacterium sp., Afipia sp., Methylo-
bacterium sp., and Sphingomonas sp.). This observation, 
however, does not exclude species-specific resistance. 
Nevertheless, some strains identified to the species level 
in this study (S. abikonense, N. asteroides, and B. massil-
iensis) also presented resistance patterns different from 
those reported in the literature, suggesting intra-specific 
diversity and acquired resistance. Similarly, according to 
Narciso-da-Rocha et al. (2013), Acinetobacter spp. iso-
lates (obtained from WTP and tap water) of the same 
sequence types presented wild type or non-wild type 
against some antibiotics. On the other hand, some strains 
identified in this study as belonging to the same genus 
or species presented very similar (M. frederiksbergense, 
B. massiliensis, B. mediterranea) or identical (Achro-
mobacter sp.) resistance patterns among each other, 
despite being isolated from different sampling points 
or campaigns, which reduces the likelihood of their 
affinity. Therefore, both HGT and VGT appear to play 
a role in the resistance spread among tap water ARB.

Conclusions

Tap water bacteria could be MDR and disinfectant-
resistant. Neither seasonal nor WTP-dependent vari-
abilities were found in terms of bacterial resistance to 
antibiotics and disinfectants. IMP proved the most 
effective, and CAZ the least effective drug against tap 
water isolates. The comparison of resistance patterns 
of the strains investigated in this study with previous 
literature reports indicated the existence of intra-genus 
and intra-specific variabilities, suggesting acquired 
resistance of tap water bacteria. Nevertheless, some iso-
lates’ species-specific resistance could not be excluded 
because most strains were only identified to the genus 
level. Moreover, some strains identified in this study as 
belonging to the same genus or species presented very 
similar (M. frederiksbergense, B. massiliensis, B. medi-
terranea) or identical (Achromobacter sp.) resistance 
patterns among each other. It appears that both hori-
zontal and vertical gene transfer could shape resistance 
phenotypes of tap water bacteria.
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