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KINETICS AND MECHANISM OF THED OXTDATION PROCESS

OF TWO-COMPONENT Fe-Al ALLOYS

Hanna Przewlocka, Jolanta Siedlecka

I.	 INTRODUCTION	 /14 7^`'

The problem of oxidation of two-component Fe-A1 alloys has

been an object of interest for the Department of General Chemistry

of the Institute of Metallurgy at the Czestochowa Polytechnics.

In this paper we present the results of studies on kinetics,

morphological structure, and the chemical and phase composition of

the product of oxidation. This work is a continuation of earlier

studies on the kinetics and mechanism of the oxidation of two-

component Fe-Al alloys. Results of the first part, which involved

compositions with lower contents of aluminum, have been published

already in Archiwum Hutnictwa [1]. This part extends the problem

to higher ranges of temperatures and to higher contents of aluminum.

2.	 EXPERIMENTAL PART	 1$

Investigations were carried out on 7 types of two-component

Fe-Al alloys, which were prepared from iron EO-4 (the contents of

impurities did not exceed 0.15%) and aluminum class A-0 99.999%

pure. The contents of the basic alloy component in particular

alloys are given, among cthers, in Table 1.	 The process of melting

the alloys, making the structure uniform and preparing samples

for tests is described in [1]. Alloys were obtained with contents

of aluminum up to 30% in which the contents of impurities did not

exceed 0.18%.

Numbers in margin indicate pagination in foreign text.
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Figure 1. Parabolic course of the process of oxidation of two-com-
ponent alloy containing 0.68% Al in the temperature range 923-1223 K
(scales for temperatures 923, 998 and 1073 on the left side, and
for 1148 and 1223 on the right side of graph)
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Figure 2. Parabolic course of the oxidation process of two-component
alloys 2, 3, 4 and in the temperature range 1148-1223 K (scale for
alloys 3 and 4 on the left, and for 2 on the right side of graph);
stop = alloy, stop = alloys
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Figure 3. Parabolic course of the oxidation of alloy 5 containing
18.08% Al in the temperature range 1073-1373 K.
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Figure 4. Parabolic course of the oxidation of alloy 6 containing
22.6% Al in the temperature range 1073-1373 K.
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Studies of the oxidation rate

Kinetic studies were carried out on a thermogravimetric t
apparatus using the continuous isothermal gravimetric method.

The rate of oxidation was measured during the 50-hour oxidation

process at temperatures of 923, 998, 1073, 1148, 1223, 1298 and
1373 K in air atmosphere.

Errors in determining the parabolic reaction rate constant

would arise from inaccuracies in directly measured quantities such

as: time, mass and surface area of sample, and variations in

temperature. The error resulting from inaccurate measurements of

time, at the applied frequency of reacting every 10 minutes, was

small and did not exceed 5 sec, and was 0.8% on the average. The

accuracy of weighing did not exceed ±5 . 10 
4

g ., which at the total 	 /151

mass increases of about 0.1 g meant 1% error.

Dimensions of samples (disc of diameter 25 mm and average

thickness 2.5 mm) were measured with an accuracy of about 0.01 mm;

hence,the relative error of the measurement of surface of samples

was 0.5%. The constancy of temperature was ensured by application

of an automatic electronic compensator type EPP-120 with regula-

ting attachment and continuous recording, of the degree of accuracy

0.5 and sensitivity 0.1% of the measuring range. It ensured the

temperature stability within the limits ±3 degrees, which corresponds

to the maximum 0.5% error.

An error caused by changes of the metallic core surface during

the reaction was also taken into account, following the work [2].

On the basis of average values obtained from seven measurements,

graphs were prepared (Figures 1, 2, 3, 4, 5) showing the dependence

of the square of mass increase of sample per unit area on the

oxidation time. After no longer than 10 hours, one can see already

Z4	 o;

t
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Table 1. Parabolic constants of the oxidation rate of Fe-Al
alloys [gw/m4 • hour)

Alloy 	 Temperature	 a

number	 923K 1 UOSK i 107.21< i 11.1fa: I 122Ar: I rn^iair I 1.1,7gt

3

io,(,s a^ ^	 200
23	 ^

11,33 ...m
017
^28

lags 6000
3,20 21_.4.'7 G' 112
7,2 11,7 24 44

4 s,ao 2
+

5 18,08 0,32
 0,12

(1'^`` r

0,46 0,06 1,42 3,9
6 27.,00

2V,8$
U,11 0,10 0,32 0,53

^^.7 0,31 ^0,30 I 0,01 °2,30 ._

the grouping of the majority of measurement point q on a straight line,

indicating that the process follows the parabolic law of oxidation.

This regularity is particularly clear for alloys with lower contents

of aluminum (below 18%), and is less pronounced for alloys with a

higher percentage of aluminum (above 22%), which is connected probably

with a larger measurement error arising for lower increases of the

sample mass.

From straight,line portions of curves, we determined by a

graphical method the rate constants of the reaction (Table 1).

The mathematical analysis of the curves was performed on a digital

H

5
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r"igurr, 5. Parabolic course of the oxidation of alloy 7 containing
29.88% Al in the temperature range 1073-1373 K.

computer taking into consideration only the points obtained after	 / 152

10 hours of the process. We tried to determine the probability that

the points were following a parabolic relation by putting into a

computer the values of the change of mass y and the duration of

process x to fit, the equation y = ax  + c. The obtained values of b

were in the range 0.5 ± 0.02. On the basis of these results we can

accept, with probability 0.98, the hypothesis for the parabolic

course of the process. Taking into account the mentioned values

of the measurement errors, and the error connected with determining

the parabolic constant [31, we assumed that the relit ,ve error did
not exceed 10%.

Chemical X-ray microanalysis

A clarification of the oxidation process requires thorough

studies of chemical and phase composition, and morphological structure

of the product of oxidation. We determined local changes of

chemical composition. of the scale (burnout) and metallic base by

using an electronic microprobe type IXA-3A. The X-ray microanalysis,

for the contents of iron and aluminum was performed on samples

previously subjected to the oxidation process at the highest temperature

for a given alloy. Two time periods of the oxidation process were

6
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Figure 6. Distribution of the concentration of iron and aluminum in
scale and surface layer of alloy 2 with initial contents 3.78% Al.
Temperature of oxidation reaction 1223 K.

applied: 50 hours for samples of Fe-A1 alloys containing up to 	 /154

7.2% Al, and 240 hours for samples with higher Al contents. The

results of X--ray microanalysis are presented here in the form of

graphs in Figures 6, 7, 8.

Alloys with low contents of aluminum up to 7.2%, oxidized

for 50 hours at a temperature of 1223 K, are covered with a scale

(burnout) composed of two distinct layers separated by a gap

(shown for illustration in Figure 6). The inside layer of the scale

shows a certain enrichment in aluminum in comparison with the metallic

base, whereas there is a lack of this components in the thicker outside

Layer. Both in the first and the second layer, the dominant component

is iron. In the outside part of the scale, one can notice a sublayer

with reduced contents of iron. The surface-adjacent layer of metal

shows a slight increase of the aluminum contents towards the metal-

scale boundary. In the analyzed layer of metal, there are clear Indic-

ations of an increase in the contents of aluminum with a concurrent

reduction of the contents of iron, which could be connected with

internal oxidation. The scale formed on the investigated alloys

18-30% aluminum is thin (up to 0.03 mm), forming one layer, and

consisting nearly exclusively of aluminum oxides (Figures 7 and 8).
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Figure 7. Distribution of Fe and Al in scale and surface layer
of alloy 5 with initial content 18.08° Al. Oxid. temperature
1373 K.
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In rare cases, for instance in alloy 5, one could notice traced

amounts of iron oxides in the scale.

X-ray investigations

We performed an X-ray analysis using the powder method in

order to identify the phase composition of the products cf

oxidation. Samples set aside for these investigations were !;ub-

jected to oxidation using temperature and time, as in the case

of studies with electronic microprobe. The results are presented

in Table 2 (the data for identification of particular phases were

taken from Reference [43). It was found that the X-ray studies fully

confirmed the results obtained with a microprobe. The scale formed

on alloys containing up to 7.2% aluminum is composed nearly exclu-

sively of iron oxides; the outside layer consists of hematite Fe2031

magnetite Fe 3 0 4 and wistite FeO, and the internal layer is composed

of Fe 304, FeO and mixed spinets Fe0 • Al 2 0 3 , characteristic for

alloys 2, 3, 4. The common characteristic feature for analyzed

alloys of this group is the appearance of a wistite phase, in the

case of alloy 1 - in the whole range of investigated temperatures, and

in the case of remaining alloys - above the temperature 1073 K.

The scale formed on alloys containing 18-30% aluminum is

composed of aluminum oxide, while iron oxides and spinets appear

only in trace quantities. The dominant phase of Al20 3 in the scale

varies depending on the oxidation temperature. At lower temperatures

(up to 1223 K), the low-temperature type of Y - Al 20 3 appears, whereas

at temperatures above 1223 K the high-temperature type of a - Al203

is formed, which is in agreement with the literature data C5, 6, 71.

;a

Metallographic studies 	 /155

i

The morphological structure of the product of oxidation was

studied using the microscopic metallographic analysis of a transverse

polished side of the sample, made perpendicularly to the original

surface of disc covered with scale. The analysis was supplemented
x^i

I
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Table 2. Phase composition of oxide scales on
Ve-Al alloys ,

o Temperature
poAl fl23 1C	 1U73IC 1148 h n;^l1	 ri	 1'173 G

F(J20 1 	re,o,	 rru	 l^r2t^^ I'(rO	 )'r2o,
1 0.08 reoil	 170004 	re304 41	 r0nt), re;,ua	 l	 ,	 1, 1^2t,.,

I^et) rat)
C ar2 t)a I I r2(7y	 f e2()

4
	hr202 hr,t)2	

I'( JU^.	
I (2t1,

2	 3,78	 17e204 FeO - Ai 203 re20+ lre2u4 VWW20;, Peo
Al

reoAf re0 ' Al 00 1703()4
Peu

00202 re30, re2u2 rr203 N-1104 ) ae„ua
3	 •1,70	 I4,20 4 reo a AI 2 0 3 1 :e204 re204 rrU

Al2p2A1
rru J A1.0 3 4.1 1'et.)	 Af^t) 2 NO

V(1 0 41

Fet)	 :S1 2 ta2 I (t3	 alri)a re2t)2 1'r2tJa I (O()4' r M-203'
I	 7,`;U	 f I e2U^ 1 r2Ua Ve,04 i	 U4 II rU Al 2u2 a Af202

E I	 AI203 rc0
VvO sI a-M.03A1 re;,0491,

Ix,uK	 i	 y^n12t),, a•Al2t12 a•AI20,1.
	 ..,

1

•
^^ •:	 A 12 0;,

..... „

N

i rrSl }+!i	 II..^)	 (l;^	 .'t•,11, O,^ ^•:1IoU(^

1

w- internal layer of scale;	 - phase composition.of scale growth;
z- external layer of scale; 	 - phase composition of scale between
outgrowths; sl - traces
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with tests carried out by the marker method which gave some idea
about the relative role of reagents in the process of mass transport

through the layers of the reaction product. A platinum marker was
deposited on the polished surface of metal by spreading it in the

Form of short sections, and subsequently by oxidizing this prepared
sample in the horizontal position. This is a method that ensures 	 A

the best results.

The scale formed on alloys containing up to 7.2% Al is well
delineated and consists of two distinct layers (Figures 9 and 10).
The marker is located in the external layer of the scale, somewhat

above the boundary with the internal layer. This fact indicates that Z_156
the external 1,,iyer of the scale is formed as a result of diffusion
of metal ions out from the core. At the same time, some oxide
exclusions are visible in the metallic phase, evidencing the

occurring phenomenon of internal oxidation (Figure 11).

T1,,,A oxidation product found on the analyzed samples containing
18-30% Al is a deposited layer. Only at temperatures of 1373 K
is there a clear, thin scale, which forms a weakly adhering un,'I"orm,

layer. Experiments carried out with the aid of platinum markers

failed to provide sufficient information with regard to the

d1rection of diffusion of reagents in the scale, since the thickness

of the scale obtained in 50 hours is of the order of 10-20 pm; hence,

is less than the marker diameter (about 50 Um). At higher temperatures

(above 1373 K), when thickness of scale increases, the marker is

destroyed [9, 101.

DISCUSSION OF RESULTS

The studies of the kinetics of the oxidation of two-component

Fe-Al alloys, and investigations of the chemical and phase composition

as well as structure of the scale, coupled with results of studies

of the diffusion of reagents obtained by the marker method, provided

information on the corrosion of these materials. On the basis of
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Figure 0. Microphotograph of a transverse polished
side obtained on alloy 2 containing 3.78% Al. Temperature
of oxidation 1223 K. Magnification 75 X
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results of kinetic studies of the oxidation process, conducted in

the temperature range 923 -1373 K, we can state that, at the most, after
10 hours the process follows a parabolic law, independently of

the alloy composition and the reaction temperature. It means that

the slowest step, determining the rate of reaction, is the diffusion

of reagents in the solid phase of the product of reaction.

Figure 12 shows that the changes in reaction rates, as a

function of the contents of aluminum in the investigated alloys. are

partially similar for all temperatures. This similarity can be

noticed clearly in the regions of two groups: alloys with low con-

tents of aluminum - up to 7.2% and alloys with 18-30%. On the other

hand, the composition of the alloy distinctly affects both the phase

character (Table 2), morphological structure and thickness of the

scale (Table 3). Because of these changes, we can divide alloys

into two groups: alloys with low contents of aluminum up to 7.2%

and alloys with higher contents of aluminum of 18-30%.

FE-A1 alloys containing up to 7.2% Al

The dependence of the rate constant of the oxidation of Fe-A1

alloys on the temperature is presented in semi-logarithmic form in

Figure 12. The graphs show breaks which evidence the effect of

temperature on the oxidation mechanism of the substance. In all the

alloys containing up to 7.2% Al, one can see a distinct increase of

the reaction rate as the temperature rises (above 1023 K for

alloy 2, above 1073 K for alloy 3, above 1123 K for alloy 4). The

authors think that this is connected with changes in the phase structure

of the scale occurring at a temperature dependent on the contents of

aluminum. As a result of these changes, the ratio of concentration of

phases which form the composition of the internal layer of scale is a

function of temperature for this group of materials. Namely, at

temperatures of 1073 K and lower, the predominant phase in this layer
is the spinel phase Fe(Fe 2 _XAl x )0 41 whereas at higher temperatures

there appears also the wistite phase whose amount increases as the

temperature rises (Table 2). In the light of kinetic studies and the 	 r

13
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Figure 11. Microphotograph of a transverse polished side of near-
surface layer of metallic core and scale, obtained on allay 2 con-
taining 3.78% Al. Temperature of the reaction of oxidation 1223 K.
Magnification 350 X.
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Figure 12. Dependence of the rate constant of oxidation reaction
on the temperature for Fe-A1 alloys.
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results on the chemical and phase composition and morphological

structure of the scale, the following model for the oxidation

of these two-component alloys is proposed (Figure 13). At first,{
a tri-layer scale characteristic for pure iron grows on the sur- 	 116 0

face of alloy, and at the same time oxidation of aluminum takes

place in the metallic phase. Growth of the external scale occurs

because of the out-of-core diffusion of ions and electrons of

iron, whereas the internal region of oxidation appears as a result

of the towards-the-core diffusion of oxygen through pores and

#	 crevices formed in the scale. The source of oxygen for the process 	
;i

of internal oxidation might as well be the dissociation of the

scale. As thickness of the scale increases, its contact with the

metallic core becomes interrupted in the second stage and a gap

is formed. In this way, conditions are created for dissociation

of the wistite layer and for secondary reactions of oxygen arising

from decomposition of FeO with iron ions coming from the metallic

phase,, As a result, a porous internal layer of wistite is formed.

In the discussed cases, the velocity of diffusion governs the rate

of growth of particular scale layers. Hence, one could conclude

that the wistite layer because of its thickness plays the decisive

role in the scale formation. The appearance of the wistite phase

in the scale is'characteristic for the analyzed alloys oxidized

at temperatures above 1073 K.

Summing up the results pertaining to the kinetics and mechanism

of the oxidation of alloys 2, 3 and 14, we can state that the alloy-

ing additive, Al, decisively affects the rate of reaction and

chemical composition of the scale. This alloying additive

improves the heat resistance of the alloy and causes the formation

of a protective layer of spinel or oxide structure. The mobility

of ions of aluminum and in iron in the spinel phase is slower than

the mobility of iron ions in the wistite or even magnetite layer.

15	 5
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Graphs of dependence of the rate constants of oxidation kp on	 3

temperature are shown in semi-logarithmic form in Figure 12. 	 'I

The curves characterizing the high-aluminum alloys (5, 6,.7)

show two straight lines with different slopes. The fact that this
i

dependence is not rectilinear throughout its entire course 	 !

but undergoes a break (change of slope) could be caused for two

reasons; either there are structural changes in the metallic

core itself, or there is a change in the phase composition of the 	 {

scale at temperatures close to the temperature corresponding

to the observed "break". If we accept as true the first alterna-

tive, i.e., the appearance of structural changes in the alloy, i
then the break should be explained on the basis of the equilibrium

diagram of the Fe-Al system. We found on the basis of the X-ray

microanalysis that, during oxidation of high-aluminum alloys,

there is a selective oxidation of aluminum, which leads to im-

poverishment of this component on the external surface of the

metallic core (Figures 7,8), which is in agreement with the

literature data [11]. Such a reduction in the concentration of

aluminum could cause changes in the structure of surface-adjacent

layer of alloy. As the diagram of phase equilibria of the

system Fe-A1 shows, in the range of concentrations 18-30% Al

there are two structures: one with ordering of the type Fe3Al,

and the other of the type FeAI. These structures are

characteristic for temperatures lower then 973 K C1]. The

mentioned change of structure could affect the shape of the curve

only at temperatures lower than the analyzed ones. The observed

break in the curve characterizing a change in the oxidation rate

with change of temperature occurs in the temperature range 1223-1273K

(Figure 12). Under these conditions the possibility of structural

changes is not probable, and the explanation of the above "break"

based on. the assumption of structural changes in the alloy is

problematic.
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Table 3. Thickness of scale formed on surface of the oxidized
Fe-Al alloys.

Type of bleating Time, hickne s of scale
alloy _I tempera— hours

,nternal ,xternal Total
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Figure 13. Diagram of the mechanism Tl of the formation
of heterophase multilayer scale on, the analyzed two-component
Fe-Al alloys containing up to 7.2% Al.
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Figure 14. Mechanism for the formation of an oxide scale on
the analyzed high-percent Fe-Al alloys, on the basis
of the author's investigations ( directions of dif-
fusion of the reagents were taken on the basis of
Reference /15/) .
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It remains, therefor:, to consider the second assumption

that changes in phase composition of the scale are responsible

for the "break" occurring on the curve (Figure 12). A change

of the phase composition of the scale may be caused by the appearance

of new phases or by phase change of the reaction product 113, 141.

The X-ray structural studies of scale formed on analyzed alloys

have shown (Table 2) that in a layer formed at the temperature

1373 K there are trace amounts of iron oxides in addition to the

basic phase a-Al 20 3 . But at the temperature 1073 K, the presence

of iron oxides was not observed (Table 2), and the basic layer

of the scale is formed by aluminum oxides at the phase y - Al203.

The reason for a change of the oxidation rate with the rise of

temperature may be, therefore, either the appearance of iron

oxides at higher temperatures or a phase transition of aluminum

oxides. It does not appear probable that iron oxides appearing

in trace amounts could cause such a distinct change in the activa-

tion energy (Figure 12). It seems, therefore, highly probable

that the appearance on the surface of the oxide a-Al 20 3 which	 /16 2

has a higher activation energy than the oxide y - Al 20 3 , is a

factor accelerating the oxidation process.

On the basis of the results of these studies, supplemented by

the literature data concerning the directions of diffusion of

reagents [151, we offer the following model of the formation mechanism

of the scale on alloys analyzed (Figure 14). In the first stage

of reaction, crystalline embryos are formed, probably of both oxides -

iron and aluminum. The possibility of the formation of aluminum

oxide is, however, larger than of the hematite layer, since the

absolute value of the free energy of formation of aluminum oxides

is considerably greater than that of iron oxides. The contents

of aluminum are considerable; hence in a short time the whole

surface of metal becomes covered with a uniform dense layer of

aluminum oxides. The formed layer of Al 20 3 , having nearly no de-

fects, has considerable resistance to both the out- of -core dif-

fusion of cations of two metals and to into-the-core diffusion of

18
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gaseous oxygen [161. For these reasons, the thickness of the

scale incrQases only little under these conditions.

CONCLUSIONS

1. The oxidation of all the investigated Fe-A1 alloys occurs

after passing the initial stage cup to 10 hours), according to

the parabolic kinetic law ., indicating that the total, oxidation

process is governed by the process of diffusion. Kinetics of the

oxidation process of alloys heated in air atmosphere depends on

the temperature and composition of the alloy, the rate of reaction

decreasing with the higher percentage contents of aluminum.

2. The dominant component of the scale on alloys containing up to

7.2% Al is iron, and on alloys containing 18-30% Al - aluminum.

In the case of alloys with low contents of Al, we find also

aluminum oxides in the metallic phase, formed in the process of

Internal oxidation. As the content of aluminum in the alloy

increases, spinels appear in the scale, and with a still further

increase of aluminum they turn into oxides - Y-Al 20 3 and a -Al203.

A layer of spinels or aluminum oxides slows down the process of

oxidation.
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