6 research outputs found

    Role of the C-terminus of the Catalytic Subunit of Translesion Synthesis Polymerase ζ (Zeta) in UV-induced Mutagensis

    Get PDF
    Cellular DNA is under constant attack by endogenous and exogenous DNA damaging agents that threaten genome integrity. Unrepaired DNA lesions often stall replicative DNA polymerases and are bypassed by translesion synthesis (TLS) to prevent replication fork collapse. TLS mechanisms are lesion- and species-specific, with prominent roles of specialized DNA polymerases with relaxed active sites. After incorporation of nucleotide(s) across from the lesion, the distorted primer termini are typically extended by DNA polymerase ζ (Pol ζ). As a result, Pol ζ is responsible for most DNA damage-induced mutations. Mechanisms of sequential polymerase switches and regulation of Pol ζ access to DNA in vivo remain unclear. Pol ζ shares two accessory subunits, called Pol31/Pol32 in yeast, with replicative Pol δ. Inclusion of Pol31/Pol32 in both holoenzymes requires a [4Fe-4S] cluster in the catalytic subunit C-terminal domains (CTDs). Disruption of the Pol ζ cluster or deletion of the POL32 gene attenuates induced mutagenesis. Here we describe a novel mutation affecting Pol ζ, rev3ΔC. Rev3∆C lacks the entire CTD, the binding platform for Pol31/Pol32. This mutation provides insight into regulation of polymerase switches and further defines regulatory roles of the Pol ζ CTD. rev3ΔC strains are partially proficient in Pol32-dependent UV-induced mutagenesis. This suggests a role for Pol32 in TLS beyond binding Pol ζ, related to Pol δ. We examined several TLS regulatory proteins, including Mgs1 which can compete with Pol32 for binding PCNA. Overproduction of Mgs1 suppressed induced mutagenesis, but had no effect in rev3ΔC suggesting Mgs1 exerts its inhibitory effect by acting specifically on Pol32 of Pol ζ. This evidence for differential regulation of Pol δ/ζ Pol32 emphasizes complexity of polymerase switches. Spectra of mutations induced by UV in rev3∆C were examined to further define the regulatory role of Pol ζ CTD. Rev3∆C produced different mutational spectra than WT, progressively deficient first in transversions/frameshifts, then transitions, and altered upon increasing UV doses. This supports a fine-tuned role for the CTD in regulating Pol ζ function and highlights differential mechanisms activated by different UV doses

    Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis

    Get PDF
    DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b–/– lymphomas, but not in Dnmt3b–/– pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b–/– lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies

    DNA Polymerase ζ without the C-Terminus of Catalytic Subunit Rev3 Retains Characteristic Activity, but Alters Mutation Specificity of Ultraviolet Radiation in Yeast

    No full text
    DNA polymerase ζ (pol ζ) plays a central role in replicating damaged genomic DNA. When DNA synthesis stalls at a lesion, it participates in translesion DNA synthesis (TLS), which helps replication proceed. TLS prevents cell death at the expense of new mutations. The current model indicates that pol ζ-dependent TLS events are mediated by Pol31/Pol32 pol ζ subunits, which are shared with replicative polymerase pol δ. Surprisingly, we found that the mutant rev3-ΔC in yeast, which lacks the C-terminal domain (CTD) of the catalytic subunit of pol ζ and, thus, the platform for interaction with Pol31/Pol32, retains most pol ζ functions. To understand the underlying mechanisms, we studied TLS in normal templates or templates with abasic sites in vitro in primer extension reactions with purified four-subunit pol ζ versus pol ζ with Rev3-ΔC. We also examined the specificity of ultraviolet radiation (UVR)-induced mutagenesis in the rev3-ΔC strains. We found that the absence of Rev3 CTD reduces activity levels, but does not alter the basic biochemical properties of pol ζ, and alters the mutation spectrum only at high doses of UVR, alluding to the existence of mechanisms of recruitment of pol ζ to UVR-damaged sites independent of the interaction of Pol31/Pol32 with the CTD of Rev3

    Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis

    Get PDF
    DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b–/– lymphomas, but not in Dnmt3b–/– pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b–/– lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies
    corecore