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Cellular DNA is under constant attack by endogenous and exogenous DNA 

damaging agents that threaten genome integrity. Unrepaired DNA lesions often stall 

replicative DNA polymerases and are bypassed by translesion synthesis (TLS) to prevent 

replication fork collapse. TLS mechanisms are lesion- and species-specific, with 

prominent roles of specialized DNA polymerases with relaxed active sites. After 

incorporation of nucleotide(s) across from the lesion, the distorted primer termini are 

typically extended by DNA polymerase ζ (Pol ζ). As a result, Pol ζ is responsible for 

most DNA damage-induced mutations. Mechanisms of sequential polymerase switches 

and regulation of Pol ζ access to DNA in vivo remain unclear. Pol ζ shares two accessory 

subunits, called Pol31/Pol32 in yeast, with replicative Pol δ. Inclusion of Pol31/Pol32 in 

both holoenzymes requires a [4Fe-4S] cluster in the catalytic subunit C-terminal domains 

(CTDs). Disruption of the Pol ζ cluster or deletion of the POL32 gene attenuates induced 

mutagenesis.  

Here we describe a novel mutation affecting Pol ζ, rev3ΔC. Rev3∆C lacks the 

entire CTD, the binding platform for Pol31/Pol32. This mutation provides insight into 

regulation of polymerase switches and further defines regulatory roles of the Pol ζ CTD. 



rev3ΔC strains are partially proficient in Pol32-dependent UV-induced mutagenesis. This 

suggests a role for Pol32 in TLS beyond binding Pol ζ, related to Pol δ. We examined 

several TLS regulatory proteins, including Mgs1 which can compete with Pol32 for 

binding PCNA. Overproduction of Mgs1 suppressed induced mutagenesis, but had no 

effect in rev3ΔC suggesting Mgs1 exerts its inhibitory effect by acting specifically on 

Pol32 of Pol ζ. This evidence for differential regulation of Pol δ/ζ Pol32 emphasizes 

complexity of polymerase switches. Spectra of mutations induced by UV in rev3∆C were 

examined to further define the regulatory role of Pol ζ CTD. Rev3∆C produced different 

mutational spectra than WT, progressively deficient first in transversions/frameshifts, 

then transitions, and altered upon increasing UV doses. This supports a fine-tuned role 

for the CTD in regulating Pol ζ function and highlights differential mechanisms activated 

by different UV doses. 
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1 Introduction 

For individual organisms to survive and remain healthy, it is critical that genetic 

information is properly maintained and transmitted faithfully to the next generation. This 

task is far from trivial because cellular DNA is under constant attack by both endogenous 

and exogenous (environmental) DNA damaging agents that threaten the integrity of the 

genome.  

1.1 Sources and Types of DNA Damage  

Human cells can acquire up to 100,000 spontaneous lesions per cell per day [1]. 

Without repair, this damage would be of huge negative consequence to the cell. DNA 

acquires spontaneous damage in a variety of ways (reviewed in [2, 3]). Due to the 

chemical nature of DNA present in an aqueous environment, its bases are subject to 

spontaneous hydrolysis. This can lead to bases being lost from nucleic acids, forming 

abasic sites (also called AP (apurinic/apyrimidinic) sites). Aerobic metabolism generates 

reactive oxygen and nitrogen species, as well as other products that can damage DNA. 

Reactive oxygen species (ROS) lead to a variety of types of damage: chemically altered 

bases such as thymine glycol and 8-oxoguanine (8-oxoG), AP sites, and single stranded 

breaks (SSBs) in the DNA backbone. Endogenous alkylating agents present in cells also 

chemically alter the bases of DNA. Another prevalent source of spontaneous DNA 

damage is deamination of bases. This can occur spontaneously or enzymatically and can 

lead to mutations by miscoding. Base analogs or damaged bases present in DNA 

precursor pools can be incorporated into DNA during replication, leading to mispairing 

and mutations.  
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The environment is a tremendous source of DNA damage (reviewed in [2]). UV 

radiation from the sun can link adjacent pyrimidines, forming 6,4 photoproducts (6-4PPs) 

and cyclobutane pyrimidine dimers (CPDs) which are difficult to replicate past. Ionizing 

radiation causes many different lesions, including oxidized bases and dangerous double 

stranded breaks (DSBs). Much of the DNA damage is caused by chemical agents in the 

environment. Examples include Aflatoxin B1 from fungi, which can cause bulky covalent 

links to guanine, and N-2-acetyl-2-aminoflurene (AAF, originally designed as an 

insecticide) and benzo[a]pyrene (cigarette smoke, car exhaust) that can form adducts with 

DNA. Therefore, in the presence of detrimental endogenous and environmental factors, 

cells must deal with the challenges of heavy loads of DNA damage.  

1.2 Consequences of DNA damage  

The type of DNA damage and how it is processed affect the biological outcome 

(reviewed in [3]). Some specific lesions are primarily mutagenic, others are cytotoxic 

(cell death) or cytostatic (inhibition of cell growth), and some can give rise to any one of 

these effects depending on the conditions present. Correspondingly, DNA damage can 

lead to cell death, cessation of cell division (replicative senescence), or mutations leading 

to uncontrollable growth and cell division. By causing senescence or death, unrepaired 

DNA damage can play a role in aging. This is evidenced by the fact that defects in DNA 

repair lead to progeroid syndromes such as Werner’s or Cockayne’s syndrome, which are 

characterized by premature aging.  

Damage-induced mutations in the DNA of germ cells lead to hereditary diseases 

and mutations in the DNA of somatic cells lead to the development of cancer, arising 

from loss-of-function mutations in tumor suppressor genes or activation of oncogenes. 
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Mutations in genes involved in DNA repair can predispose cells to transformation. Well-

known examples include skin, colon, breast, and ovarian cancers (mentioned in 1.3 under 

respective DNA repair pathways) [4]. Genome instability is a hallmark of all cancers [5]. 

In addition to cancer predisposition, many other specific diseases arise in the absence of 

efficient DNA repair pathways. Several of these are listed in Table 1.1. DNA damage has 

also been shown to contribute to a variety of neurodegenerative diseases and psychiatric 

disorders (reviewed in [6]).  

Given that the genome can suffer a huge spectrum of damage either 

spontaneously or as a result of exposure to genotoxic environmental agents, it is not 

surprising that cells contain many systems designed to deal with DNA damage (Figure 

1.1). Collectively they are called the DNA damage response (DDR). There are two major 

ways cells deal with DNA damage: the first is through DNA repair and the second is 

through DNA damage tolerance. 

1.3 DNA Repair Mechanisms 

DNA repair results in the restoration of damaged DNA and preservation of 

genome integrity (reviewed in [2, 7, 8]). DNA repair contains several pathways 

belonging to one of three fundamental mechanisms: reversal of DNA damage, excision of 

damaged elements, and repair of breaks in the DNA backbone. Direct reversal is the 

simplest and most accurate form of repair. In bacteria and yeast, CPDs can be split back 

to two normal pyrimidines by photolyase (discussed more in chapter 5) and some 

methylated bases can be restored by a methyltransferase. The two major DNA repair 

pathways involve excision of damaged elements, and are called base excision repair 

(BER) and nucleotide excision repair (NER). Mismatch repair (MMR) is another  
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Table 1.1 Some of the Diseases caused by defective DNA repair 

Information in table from [2, 3, 6, 9-13] 

Proteins 

Affected by Mutation 

Repair Pathway Human Disease 

 

XPD helicase 

 

NER 

Xeroderma Pigmentosum; 

Trichothiodystrophy; 

Cockayne’s Syndrome 

   

 

Pol η 

 

Error-free TLS 

Xeroderma Pigmentosum 

Variant form 

   

 

Pol γ 

Mitochondria DNA 

replication/repair 

Progressive External 

Opthalmoplegia 

   

 

MRE11, NBS1 

 

HR, NHEJ 

Ataxia Telangiectasia like 

Disease; Nijmegen Breakage 

Syndrome 

   

LIG4 NHEJ Lig4 Syndrome 

   

ATM DSB repair Ataxia Telangiectasia 

   

 

APTX 

 

SSB repair 

Ataxia Oculomotor Apraxia 1; 

Spinocerebellar Ataxia; 

Microencephaly 

   

FANCA-G, D1 

(BRCA2), D2, L 

 

Crosslink repair 

 

Fanconi Anemia 

   

BLM RecQ helicase Bloom’s Syndrome 

   

WRN RecQ helicase Werner’s Syndrome 
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Figure 1.1 DNA Damage Response  

The genome is under constant threat of damage, both spontaneously and as a result of exposure to genotoxic environmental agents. 

Cells contain many mechanisms designed to deal with DNA damage, collectively called the DNA damage response (DDR). There are 

three major options when dealing with DNA damage. First there can be repair of the damage, which results in restoration of the 

original DNA sequence. Second, there can be DNA damage tolerance. In this case, the lesions are bypassed to allow for continuation 

of replication, and then they can be repaired at a later time. Finally, if the damage is not processed it will lead to replication and/or 

transcription arrest and ultimately cell death. There can also be chromosomal rearrangements that occur when these processes are not 

operating correctly, which can result in mutation and cancer.
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important excision repair pathway for removing predominantly mismatched normal 

bases, but under special conditions it can also remove modified bases such as 8-oxo-G or 

uracil in DNA [14-16].  

Base excision repair (BER) is responsible for removing the major endogenous 

damage that results from oxidative stress, hydrolysis of bases, alkylation, and 

deamination (reviewed in [7, 8, 17, 18]). This includes repair of subtle modifications of 

DNA such as oxidative lesions, small alkylation products, and single strand breaks 

(SSBs). During the first step of BER, damaged bases are removed by DNA glycosylases 

resulting in formation of an AP site. Different DNA glycosylases recognize different 

types of damage. The next step depends on which type of glycosylase created the AP site. 

If it was a monofunctional glycosylase, then subsequent cleavage of the backbone will 

create a nick with a 3’OH and a 5’-dRP terminus. If the glycosylase was bifunctional 

(containing intrinsic AP-lyase activity), then cleavage will result in a 3’OH and a 

5’phosphate terminus. In both cases, an AP endonuclease then nicks the DNA backbone 

and a 3’- or 5’-phosphodiesterase removes the remaining deoxyribose phosphate. Finally, 

a DNA polymerase fills the gap that is created (Pol β lyase removes 5’dRP) and DNA 

ligase seals the remaining nick. There are two branches of BER, termed short patch and 

long patch depending on how much DNA re-synthesis occurs and which DNA 

polymerase is involved. 

Nucleotide excision repair (NER) removes a variety of structurally unrelated, 

helix distorting lesions that impair replication and transcription (reviewed in [7, 8, 19]). 

Specifically, this pathway removes CPDs and 6-4PPs that arise from UV radiation as well 

as chemical carcinogen-induced bulky adducts. During NER, first there is damage 
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recognition and opening of the DNA duplex. Then dual incisions are made flanking the 

damage to initiate repair, which results in excision of a patch of single stranded DNA 

containing the lesion. The remaining gap is filled by a DNA polymerase and the nick is 

sealed by DNA ligase. There are two classes of NER, global genome NER (GG-NER) 

and transcription-coupled NER (TC-NER). The latter specifically corrects damage that 

stalls transcription in the transcribed strand of actively transcribed regions. The 

mechanisms for the two classes differ in the recognition step. Patients with defects in 

NER develop sun-sensitive diseases such as xeroderma pigmentosum, Cockayne’s 

Syndrome, and Trichothiodystrophy. These diseases confer severe predispositions to skin 

cancer, increasing the risk of cancer up 1000 fold compared to the risk in NER-proficient 

humans [4, 20]. 

Mismatch repair (MMR) corrects replication errors made by DNA polymerases 

and when non-identical duplexes exchange strands during homologous recombination 

(reviewed in [8], [21]). The mechanism of MMR is best characterized in bacteria and 

yeast, but many of the homologs of MMR repair proteins operate in mammalian cells. 

First, the MMR machinery binds to the mismatch and coordinates excision of a patch of 

DNA, including the mismatch, from the newly synthesized DNA strand. This allows for 

insertion of the correct base by a DNA polymerase. The strand discrimination 

mechanisms differ between bacteria and eukaryotes [22]. Loss of MMR has been shown 

to predispose patients to colon cancer [23]. 

Some mutagens create adducts that covalently attach DNA bases on two opposite 

strands at the same time, called interstrand crosslinks (ICL). These can also be caused by 

lipid peroxidation in the body. They pose a special challenge to DNA repair systems 
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because they block replication by preventing separation of the two strands of DNA, 

leading to the formation of DSBs (reviewed in [24]). The repair of ICLs occurs by 

complex mechanisms utilizing NER, recombination repair, and translesion synthesis [10]. 

Briefly, NER machinery makes incisions on both sides of the ICL on one strand and this 

fragment is displaced, resulting in an “unhooked” ICL and a gap in the other strand. 

Homologous recombination (HR) or translesion DNA synthesis (TLS) fills the gap and 

the “unhooked” ICL adduct is repaired by a subsequent round of NER. 

Most DNA repair processes generate nicks or gaps in DNA as intermediates. The 

replication fork collapses when it reaches these sites and DSBs are formed. These are 

most often repaired by homologous recombination in bacteria and yeast and a process 

called non-homologous end joining (NHEJ) in mammalian cells. Defects in DSB repair 

caused by mutations in BRCA1 and BRCA2 can lead to breast and ovarian cancers [25].  

1.4 DNA Damage Tolerance Mechanisms  

A special challenge arises for cells if unrepaired damage is encountered during 

DNA replication and stalls the replicative polymerase (reviewed in [4, 7, 8]). A response 

called DNA damage tolerance promotes replication through and past an aberrant 

template, leaving the damage to be repaired at a later time point.  

Cells have multiple strategies for tolerating damage to avoid the lethal effects of 

replication arrest (reviewed in [2, 4]). DNA damage tolerance contains two major 

branches: error-free recombinational damage avoidance (template switching) and 

translesion DNA synthesis (TLS). Post translational modification of the processivity 

clamp PCNA (proliferating cell nuclear antigen) plays a critical role in regulating which 

branch of DNA damage tolerance will be used (more extensive background on PCNA in 
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chapter 4.1.1). Monoubiquitylation of PCNA at Lys 164 promotes direct lesion bypass by 

recruiting specialized TLS polymerases to stalled forks. Polyubiquitylation of the same 

residue promotes damage avoidance through an unclear mechanism [4]. Sumoylation of 

PCNA at Lys 164 and Lys 127 inhibits recombination by recruiting Srs2 helicase, which 

disrupts Rad51 nucleoprotein filaments [26]. Though PCNA modification is important, it 

is likely that there are other regulatory factors as well.  

Recombinational damage avoidance plays a major role in promoting restart when 

regression of the replication fork is blocked (reviewed in [2, 8, 27]). This process is 

defined as error-free because the damaged strand is not used as a template for DNA 

synthesis. Genetic studies suggest that there are three pathways of replication-associated 

recombination: template switching to the sister chromatid, fork regression, and a gap 

filling reaction. 

In the first pathway, a switch of templates can occur in which the blocked nascent 

strand temporarily uses the undamaged sister chromatid as a replication template 

(reviewed in [27, 28]). There is also data to suggest that stalled or arrested forks can 

undergo a structural rearrangement known as fork regression. During this process the 

original template strands re-anneal, thereby extruding the newly synthesized strands as a 

short duplex. The resulting structure is referred to as a “chicken foot.” Through this, 

conservative DNA synthesis occurs on an undamaged, newly synthesized template 

strand. Then there is resolution of the chicken foot structure. Finally, when lesions are 

encountered there can be replication restart downstream of the lesion. This leaves gaps 

behind, and it is thought that recombination with homologous DNA is one of the ways in 

which these gaps can be filled. 
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DNA repair mechanisms and the damage avoidance pathway of DNA damage 

tolerance are called error-free mechanisms, reducing the mutagenic effect of DNA 

damage. However, under certain conditions it is critical for cells to be able to deal with 

excessive DNA damage, and they will do this even at the cost of mutagenesis. The 

second branch of DNA damage tolerance is TLS. 

1.5 Translesion DNA Synthesis  

During TLS, replicative DNA polymerases yield the damaged template to 

specialized polymerases which incorporate nucleotides across from the altered base(s) 

(insertion step) (Figure 1.2) ([7, 29, 30]). Most prominent in TLS are the low fidelity Y-

family polymerases η, κ, ι, and Rev1 ([31, 32]), but in some cases insertion is 

accomplished by X-family, A-family, or B-family DNA polymerases ([33, 34]). Then 

there is extension of the aberrant primer terminus, achieved by the inserter or another 

polymerase (extension step). Most frequently this extension is accomplished by the error-

prone B-family Polymerase ζ (Pol ζ) [9, 34-36]. Once the lesion is bypassed, it has been 

suggested that there could be a return to synthesis by replicative polymerases. Evidence 

also suggests that there could be post-replicative filling of the gap between the bypassed 

lesion and a downstream restart site, most likely by Pol ζ [9, 33-38].  

TLS events can have opposing effects on mutagenesis. Some TLS polymerases 

are tailored to bypass specific types of lesions and incorporate predominantly the correct 

base, i.e. the base that should have been incorporated by the replicative polymerase in the 

absence of damage. Historically, this is called error-free bypass because the action of  

these polymerases suppresses induced mutagenesis. Each of the TLS polymerases has 

different substrate specificities for different types of lesions. However, the number of 
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Figure 1.2 General Model of Translesion DNA Synthesis 

During TLS, specialized polymerases put a “patch” on DNA damage to allow for its 

repair at a later time. This is done via a two-step mechanism: first there is insertion of a 

nucleotide across from the damage site, and then there is extension of the resulting primer 

terminus. A critical step in this process is the switching of DNA polymerases. This figure 

depicts a scenario where the insertion and extension step of TLS are performed by two 

different polymerases that are not in one complex. However, it is important to note that in 

some cases insertion can be performed by Rev1 (bound to Pol ζ) or by Pol ζ itself (see 

box).  
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lesions greatly exceeds the number of polymerases. Therefore most lesions are primarily 

bypassed by the addition of an incorrect base. This so called error-prone TLS is highly 

mutagenic. This process is carried out by a complex of proteins comprised of replicative 

polymerases, TLS Pol ζ, Rev1, and monoubiquitylated PCNA ([7, 9, 39, 40].  

One critical event during TLS in eukaryotes is the physical switch between the 

polymerases. Details of how it actually occurs in vivo are not clear. Currently it is thought 

that it occurs via the two-step insertion-extension mechanism, proposed on the basis of 

experiments in yeast (Figure 1.2) [32, 34, 41]. Upon damage, PCNA is 

monoubiquitylated at K164 [42] and there is a switch from replicative Pol δ (or Pol ε) to 

another polymerase (predominantly Y-family polymerase), which inserts a nucleotide 

across from the lesion. Rev1 acts as an indispensable scaffold protein and, when 

necessary, a deoxycytidyl transferase inserting “C” opposite the lesion. Then there is a 

switch to Pol ζ which performs extension from this potentially aberrant terminus. If an 

error was made during bypass, the action of Pol ζ allows the altered sequence to remain 

in the nascent DNA strand sequence, leading to a mutation. Malfunction of this pathway 

abolishes induced mutagenesis. Many of the signals involved, aside from ubiquitylation 

of PCNA and RPA signaling, are unknown [43, 44]. One of the central enzymes involved 

in error-prone TLS is Pol ζ, and this enzyme will be the focus of this dissertation. 

1.6 DNA Polymerase ζ  

The main role of Pol ζ is as the “universal extender.” It specializes in extension 

past distorted primer termini, such as those caused by mismatched bases inserted by 

another polymerase or a base across from a bulky lesion [9]. It can also act as both the 

inserter and extender polymerase across some types of lesions, such as thymine glycol 
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[9]. Pol ζ is responsible for most induced point mutations (96 % of UV-induced 

mutations) and roughly half of spontaneous mutations ([7, 45]). It synthesizes DNA in 

vitro with low fidelity and produces a characteristic mutational signature [46], found in 

mutation spectra in vivo [8, 47, 48]. Part of this signature is attributed to template 

switches [49]. Pol ζ is the only TLS polymerase essential for viability in mice, suggesting 

it is required for tolerance of endogenous DNA damage during development. In yeast, 

deletion of REV3 encoding the catalytic subunit of Pol ζ is not lethal but causes growth 

retardation in strains with elevated levels of abasic sites [50]. Pol ζ is required for ICL 

repair and has been implicated in somatic hypermutation [10, 51].  

1.7 Pol ζ and Cancer  

Pol ζ plays a dual role in both the promotion and prevention of genomic 

instability that can lead to tumorigenesis. The effect of Pol ζ at the cellular level is very 

pronounced [35, 52, 53]). Mouse embryonic fibroblasts (MEFs) lacking Pol ζ exhibited 

sensitivity to various damaging agents and striking chromosomal instability: increased 

chromosome number (near tetraploid), increased chromosome fusions and fragmentation, 

and increased translocations [54]. This suggests that Pol ζ protects from cancer 

originating from large genomic rearrangements, though it causes point mutations that can  

contribute to cancer (Figure 1.3). Pol ζ can also contribute to resistance to 

chemotherapeutic cisplatin in human cells due to its ability to bypass intrastrand 

crosslinks [55]. Conditional knockout in mice enhanced spontaneous tumorigenesis, but 

reduction of Pol ζ levels has been associated with colon carcinomas (reviewed in [51]). 
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Figure 1.3 Dual roles of TLS in the prevention and promotion of carcinogenesis 

Mutations induced by error-prone TLS are etiologic in most environmentally induced 

cancers, but it is clear that simply blocking TLS is not sufficient to reduce cancer risk. 

This can sometimes accelerate carcinogenesis through chromosomal instability. Modified 

from [52]. 
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1.8 Thesis work 

Understanding the molecular processes underlying TLS and its associated 

mutagenesis is likely to provide important insights into carcinogenesis and other genetic 

diseases caused predominately by genetic mutations. The purpose of the work presented 

here is to finely study the regulation and recruitment of Pol ζ to sites of DNA damage, 

focusing on the role of the C-terminal domain (CTD) of catalytic subunit Rev3. A novel 

mutant which lacks the CTD, rev3∆C, is described and used to probe various aspects of 

mechanisms of UV-induced mutagenesis.  
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2 Materials and Methods 

2.1 Materials   

Most mutagenesis studies were done in the Saccharomyces cerevisiae strain 8C-

YUNI101 (MATa his7-2 leu2-3,112 ura3- bik1::ura3-29RL trp1-1UAG ade2-1UAA) [56] 

and its derivatives. Studies of the effects of the deletion of MGS1 on mutagenesis were 

done in a derivative of the strain BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0; ura3Δ0) (Life 

Technologies, U.S.A.). Extracts for western blotting were prepared from transformants of 

the protease-deficient strain BJ2168 (MATa prc1-407 prb1-1122 pep4-3 leu2 trp1 ura3-

52 gal2) [57]. Plasmids used are described in the next section.  

Mouse anti-GST, goat HRP-conjugated anti-mouse, and donkey HRP-conjugated 

anti-goat antibodies were from Genscript (Piscataway, NJ). Goat anti-human actin 

antibody (cross-reacts with yeast actin) was from Santa Cruz Biotechnology (Santa Cruz, 

CA). Super Signal West Femto Chemiluminescent Substrate detection kit and DreamTaq 

Green DNA Polymerase were from Thermo Scientific (Dubuque, IA). The 1X cOmplete 

EDTA-free protease inhibitor cocktail was from Roche (Indianapolis, IN). The 

Immobilon PVDF membrane was from Millipore (Billerica, MA). QuikChange Site 

Directed Mutagenesis kit was from Agilent Technologies (U.S.A.) All other chemicals 

were reagent grade and were purchased from Sigma Aldrich (St. Louis, MO) or Fisher 

Scientific (Atlanta, GA). 

2.2 Creation of Mutant Strains  

All mutant strains used in this dissertation are listed in Table 2.1. 
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Table 2.1: Description of mutant Saccharomyces cerevisiae strains 

Mutant 

Category 

Abbreviated Strain 

Name
a 

Genotype 

   

rev3 

mutants 

rev3-dd rev3-D1142A,D1144A 

 rev3-ZnF rev3-C1398A,C1401A,C1414A,C1417A 

 rev3-FeS
 

rev3-C1446A,C1449A,C1468A,C1473A 

 rev3ΔC
 

rev3-∆(1381-1505) 

 rev3-ZnF,FeS rev3-C1398A,C1401A,C1414A,C1417A 

C1446A,C1449A,C1468A,C1473A 

   

Other 

mutants 

pol30-K164R  pol30-K164R 

 pol32Δ pol32Δ::kanMX 

 rev1Δ rev1Δ::kanMX 

 mgs1Δ mgs1Δ::kanMX 

 MGS1↑
 

LEU2::GAL1-MGS1 

   

Double  rev3ΔC-dd rev3-∆(1381-1505),D1142A,D1144A  

mutants rev3ΔC pol32Δ rev3-∆(1381-1505) pol32∆ 

 rev3ΔC rev1Δ rev3-∆(1381-1505) rev1∆ 

 rev3ΔC mgs1Δ rev3-∆(1381-1505) mgs1∆ 

 rev3ΔC MGS1↑ rev3-∆(1381-1505) LEU2::GAL1-MGS1 

 rev3ΔC pol30-K164R rev3-∆(1381-1505) pol30-K164R 

   

Strains WT + vector [pRS425-GAL1-GST]  

with  WT + REV1↑ [GAL1-GST-REV1] 

plasmids
b
 WT + rev3-dd↑ [GAL1-GST-rev3-D1142A,D1144A] 

 WT + rev3ΔC↑ [GAL1-GST-rev3-∆(1381-1505)] 

 WT + rev3-FeS↑ [GAL1-GST-rev3-C1446A,C1449A,C1468A,C1473A] 

 rev3Δ + vector rev3Δ [pRS425-GAL1-GST] 
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 rev3Δ + rev3ΔC↑ rev3Δ [GAL1-GST-rev3-∆(1381-1505)] 

 rev3ΔC + vector rev3-Δ(1381-1505) [pRS425-GAL1-GST] 

 rev3ΔC + REV1↑ rev3-Δ(1381-1505)[GAL1-GST-REV1] 

 rev3-FeS + vector rev3-C1446A,C1449A,C1468A,C1473A [pRS425-GAL1-

GST] 

 rev3-FeS + REV1↑ rev3-C1446A,C1449A,C1468A,C1473A [GAL1-GST-

REV1] 

 rev1Δ + vector rev1Δ [pRS425-GAL1-GST] 

 rev1Δ + REV1↑  rev1Δ [GAL1-GST-REV1] 

   
a
All mutants except mgs1Δ were created in the 8C-YUNI101 background (Materials and Methods) 

b
Description of plasmids is in 2.2
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2.2.1 rev3-ZnF and rev3-FeS  

Mutations in the regions encoding the yeast Rev3 C-terminal domain (CTD) were 

first introduced into yeast integrative plasmid pRevLCav2 [56] by Dr. Artem Lada. This 

plasmid contains the Saccharomyces cerevisiae REV3 ORF region coding for 647 C-

terminal amino acids, 335 bp of downstream noncoding sequence, and the URA3 gene. A 

multiple-site plasmid mutagenesis protocol was used to create alleles coding for changes 

of cysteines 1398, 1401, 1414, and 1417 at MBS1 (ZnF) and cysteines 1446, 1449, 1468, 

and 1473 at MBS2 (FeS) to alanines [58]. The resulting plasmids encoding mutant REV3 

ORF ends were digested with SnaBI, and the yeast strain 8C-YUNI101 was transformed 

with the linear fragment to create the rev3-ZnF and rev3-FeS mutant strains [56]. 

2.2.2 rev3ΔC and rev3ΔC-dd alleles  

The plasmid pRevLCav2-rev3ΔC is a deletion derivative of integrative plasmid 

pRevLCav2 [56], created by PCR of the plasmid region flanking the deletion and ligation 

by Dr. Artem Lada. rev3ΔC encodes for Rev3 lacking the C-terminus (amino acids 1381-

1504). Site directed mutagenesis using the QuikChange kit was performed on 

pRevLCav2-rev3ΔC to create pRevLCAV2-rev3ΔC-DD, encoding for a catalytically 

dead Rev3. We used the same protocol as in 2.2.1 to integrate the mutant alleles into the 

genome and replace endogenous REV3 [56], creating the rev3ΔC and rev3ΔC-dd mutant 

stains, respectively (Table 2.1).  

2.2.3 Strains with additional mutations outside of Rev3  

Wild type (WT) and rev3ΔC strains were transformed with the BstEII-linearized 

plasmid YIp128-GAL-MGS1 (kindly provided by H. Ulrich) to create WT + MGS1↑ and 
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rev3ΔC + MGS1↑ strains, respectively, with integration of the GAL-MGS1 cassette into 

the endogenous LEU2 locus [59]. rev3ΔC pol32Δ and rev3ΔC rev1Δ strains were created 

by replacing POL32 and REV1, respectively, with KanMX cassettes in the rev3ΔC strain.  

2.2.4 Strains for overexpression of REV genes 

Strains for overexpression of rev3ΔC, rev3-dd, rev3-FeS and REV1 (Table 2.1) 

were obtained by transformation of 8C-YUNI101 rev3 (for rev3 mutants) and 8C 

YUNI101 (for REV1 overexpression) with derivatives of the multicopy plasmid pRS425-

GALGST [60] containing the appropriate GST-REV3 or GST-REV1 allele under the 

control of a galactose-inducible promoter. The derivatives of the pRS425-GALGST-

REV3 plasmid with mutations affecting the metal binding sites of Rev3, including 

rev3ΔC, were created by gap repair in yeast in vivo, described below (and in [61]). Site-

directed mutagenesis primer sequences are shown in Appendix B.  

2.2.5 Creation of p425-GALGST-REV3 derivatives using Gap Repair  

For overexpression studies and western blot analysis, we constructed expression 

vectors encoding a fusion of full-length Rev3 with GST. The basic plasmid with a LEU2 

marker and a galactose-inducible promoter upstream of REV3 was constructed by N. 

Sharma in the Dr. P. Shcherbakova laboratory. We used an in vivo gap repair method to 

transfer the mutant alleles of REV3 from pRevLCav2 to the expression plasmid (Figure 

2.1) [62]. Briefly, a yeast strain with deletion of the entire REV3 gene was transformed by 

a mixture of two PCR fragments: the section of the expression plasmid pRS425-

GALGST-REV3 without the region corresponding to the C-terminal part of REV3, and 

the section of the REV3 gene corresponding to the mutated region from pRevLCav2 

(plasmids were isolated, amplified in E. coli, and verified by sequencing). Yeast were 
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Figure 2.1: Creation of mutant pRS425 vectors using Gap Repair in Yeast 
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transformed with both fragments and the fragments were combined via homologous 

recombination.  

2.3 Determination of Survival and Induced Mutation Frequencies 

Yeast strains were typically grown for two days at 30 °C in 5 mL of yeast extract 

peptone dextrose medium with 60 mg/L adenine and uracil (YPDAU) with shaking. Cells 

were pelleted at 1000 x g in a Beckman Model TJ-6 centrifuge for 2 min and re-

suspended in 1 mL of sterile water. Cells were diluted 200,000-fold and 100 µl aliquots 

plated on synthetic complete (SC) medium; 50-100 µl of undiluted cells were plated on 

SC-arg medium supplemented with 60 mg/L of L-canavanine (Can). Plates were 

irradiated with 0, 20, 40, or 60 J/m
2
 of UV light. After three days of growth at 30 °C, 

colonies on SC plates were counted and survival was calculated by dividing the number 

of colonies at each UV treatment by the number of colonies without exposure 

(independently for each strain). After five days of growth, colonies on SC+Can plates 

were counted and the mutant frequency was calculated by dividing the number of 

colonies on SC+Can plates at each UV dose by the number of colonies on the SC plate at 

the same dose (SC colony count was first multiplied by dilution factor) as described in 

[63]. The induced Can
r
 mutant frequency was calculated by subtracting the spontaneous 

frequency (without treatment) from the mutant frequency for each UV dose [63]. All data 

points are averages of at least three independent trials (except one experiment of two 

trials), with duplicates of each sample in each trial. Error bars represent standard 

deviation. 

Strains for overexpression studies of MGS1 contained a GAL1 promoter upstream 

of MGS1 integrated at the LEU2 locus. Mutagenesis studies in these strains were 



23 

 

performed as described above with the following modifications. These strains were 

grown for two days in 4.5 mL SC-raffinose medium (no glucose, 3% raffinose) and were 

induced with 0.5 mL sterile 20% galactose for 2.5 h prior to plating.  

Experiments with overexpression of rev3ΔC, rev3-FeS, rev3-dd, and REV1 (Table 

2.1) were done as described above except the transformants were grown in SC-raffinose 

lacking leucine (-leu) to select for the presence of a plasmid, induced for 2.5 hr with 0.5 

mL sterile 20% galactose, and plated with appropriate dilutions on SC-leu and SC-leu-

Can plates. Yeast extract peptone dextrose and SC media were prepared as previously 

described [64]. 

2.4 Patch Test for Qualitative Evaluation of the Differences in 

Mutagenesis 

 

For patch test analysis, all strains were plated on one YPDAU plate in rectangular 

patches. This plate was incubated at 30 ºC overnight until robust patch growth could be 

seen. These patches were replica plated onto plates in the following order: SC (to make 

sure subsequent plates would not get too much transfer), SC, SC+Can1, SC+Can2, 

SC+Can3, and SC+Can4. Can plates 1-4 were irradiated with 0, 20, 40, or 60 J/m
2
 of UV, 

respectively. These plates were examined after five days of growth at 30 ºC.  

2.5 Preparation of Yeast Extracts and Western blot 

For the analysis of levels of soluble Rev3 variants, we used overexpression 

conditions because natural endogenous levels of Rev3 are very low. Protease-deficient 

BJ2168 strains were transformed with the appropriate variants of pRS425-GALGST-

REV3 plasmids (sections 2.1 and 2.2) and grown in 12.5 mL synthetic complete glucose 
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lactic acid (SCGL) medium lacking leucine (-leu) overnight. The following day, 62.5 mL 

of SCGL-leu were added and growth continued. The third day, 62.5 mL of yeast extract 

peptone glycerol lactic acid adenine (YPGLA) medium were added and cells were grown 

for an additional 2.5 hr. Finally, cells were induced with 2.5 g galactose for 4 hr, 

collected, and flash frozen. Yeast extracts were prepared in buffer containing 50 mM 

Tris-HCl (pH 7.5), 300 mM NaCl, 1 mM EDTA, 10% sucrose, 10 mM β-

mercaptoethanol, 1 mM PMSF, and 1X cOmplete EDTA-free protease inhibitor cocktail. 

The volume of buffer (in μL) equals the milligrams of wet cells multiplied by 2.68. Yeast 

cells overproducing Rev3 were thawed, mixed with 500 μL of 0.5-mm glass beads, and 

lysed with a Disruptor Genie™ (six cycles, two min each) at 4 °C. The lysates were 

cleared by centrifugation using a MIKRO 200R centrifuge at 8,000 x g for 15 min and 

then 10,000 x g for 10 min, all at 0 °C.  

For Western blot analysis, proteins were separated on an 8% SDS-PAGE 

Laemmli gel at 200 V, followed by a 1 hr, 20V transfer to an Immobilon PVDF 

membrane at 4 °C. Mouse anti-GST and goat HRP-conjugated anti-mouse secondary 

antibodies were used to detect the GST-Rev3 fusion protein. Goat anti-human actin 

antibodies, which cross-react with yeast actin, and donkey anti-goat HRP-conjugated 

secondary antibodies were used to detect actin as the loading control. The blot was 

developed using the Super Signal West Femto Chemiluminescent Substrate detection kit. 

2.6 Measurement of Spontaneous Mutation Rate using Fluctuation 

Analysis 

 

Spontaneous mutation rates for WT and rev3ΔC strains were determined using the 

fluctuation test. Nine independent clones of each strain were grown overnight in 5 mL of 
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YPDAU. Fifty µL of this culture were plated on solid SC+Can medium to measure 

mutations in the CAN1 gene, 50 µL were plated on medium lacking histidine (SC-His) to 

measure his7-2 reversions, and 50 µL of 300,000 fold diluted culture were plated on 

complete medium to measure viability. Plates were incubated at 30 °C. Colonies on 

complete plates were counted after three days and colonies on selective plates were 

counted after five days.  

The Can
r 
mutant frequency was calculated by dividing the mutant counts on 

SC+Can media by the counts on SC media (multiplied by the dilution factor). The 

frequency of his7-2 reversions were calculated by dividing the mutant counts on SC-His 

media by the counts on SC media (multiplied by the dilution factor). The mutant 

frequency was then used to determine the mutation rate using the Drake equation [65]. 

Spontaneous mutation rates were compared between strains using the median value with 

95% confidence limits [66]. 

2.7 Analysis of Mutational Spectra  

Cells were plated and irradiated as described in section 2.3. Then, 45-50 

independent colonies were collected from each strain (WT and rev3∆C) at each dose and 

were colony purified by streaking them out on SC+Can plates (one colony per quarter 

plate). One colony was picked from each quarter, genomic DNA was isolated, and the 

CAN1 was gene was amplified by PCR using DreamTaq Green DNA Polymerase 

(Thermo Scientific) and the primers CAN1ext-F2 and CAN1ext-R2 (see Appendix B for 

primer sequences). The PCR products were purified using the QIAquick PCR 

Purification kit and sent to Genescript for sequencing using the primers CAN1seq520F, 

CAN1seq699R, and CAN1seq2094R. DNA sequences were then analyzed using 
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Geneious Pro 5.4.6 software. Mutation frequencies were compared between strains using 

the paired Student’s t-test. Proportions of mutations between strains were compared using 

the Z test (two sample t-test determining proportions). Where samples sizes were small, 

proportions were compared using Fisher’s exact test instead of the Z test. 
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3 Genetic Analysis of Yeast Strains containing Different 

Variants of Catalytic Subunit (Rev3) of DNA Polymerase ζ 

 

3.1 Introduction 

3.1.1 The B-family of DNA polymerases 

Eukaryotes have at least 15 DNA-dependent polymerases, divided into several 

families (reviewed in [7, 18, 67-69]). These polymerases differ in the structure of their 

polymerase active site, and have an assortment of additional domains to facilitate their 

specific biological function. One of the most important groups of polymerases is the B-

family. They are defined by homology to E. coli Pol II and include replicative Pols α, δ, 

ε, and TLS Pol ζ (Figure 3.1). These polymerases function in chromosomal DNA 

replication, DNA repair, TLS, and homologous recombination.  

 Chromosomal DNA in eukaryotes is replicated through the concerted action of 

Pol α, Pol δ, and Pol ε (reviewed in [7, 18, 70, 71]). Because DNA synthesis occurs only 

in the 5’ to 3’ direction, the two antiparallel strands must be replicated differently using 

somewhat different machinery (Figure 3.2). The “leading strand” is synthesized 

continuously, and the “lagging strand” is synthesized discontinuously in 120-250 

nucleotide fragments called Okazaki fragments. First, a complex of proteins unwinds the 

DNA at bidirectional replication origins and it is coated with the single-stranded binding 

protein RPA. Next there is loading of Pol α, which is associated with a primase subunit 

that synthesizes RNA primers at replication origins on the leading strand and at the start 

of each Okazaki fragment on the lagging strand. Then Pol α synthesizes short stretches of 

DNA, and turns over synthesis to Pol δ and Pol ε. The current model is that Pol δ  
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Figure 3.1: Simple schematic of the catalytic subunits of B-family DNA polymerases 

Exo (pink boxes) – exonuclease domain for proofreading, Pol (red boxes) – polymerase 

domain for DNA synthesis, CTD (yellow boxes) – C-terminal domain involved in 

regulation and protein-protein interactions. Brown domains indicate that the respective 

domains are inactive. 
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Figure 3.2: Simplified scheme of the eukaryotic replication fork 

The double stranded DNA is first unwound by a helicase complex (blue cylinder). The 

leading strand is synthesized continuously in the direction of the moving replication fork 

(blue and orange arrows). Pol α/primase complex (green oval) lays down an RNA primer 

(red line) and a short stretch of DNA is synthesized by Pol α. The rest of the strand is 

completed by Pol ε (light orange oval). The lagging strand is synthesized discontinuously 

in the opposite direction to the overall fork progression (green arrow). Pol α/primase lays 

RNA primers and short DNA stretches at the beginning of each Okazaki fragment, then 

synthesis is completed by Pol δ (purple oval). Single stranded DNA is coated with RPA 

(yellow rectangles) for protection.  
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takes over synthesis of the lagging strand and Pol ε synthesizes the leading strand [72]. 

However, there is some debate whether or not Pol δ may also synthesize part of the 

leading strand (reviewed in [70]).  

The fourth B-family member, Pol ζ, was introduced in section 1.6. Briefly, Pol ζ 

has limited capacity to bypass several types of DNA lesions, but its main biological role 

appears to be its capacity to extend from mismatched DNA termini ending with 

nucleotides incorporated opposite lesions by other polymerases. Pol ζ is also critical to 

restart synthesis at difficult template sites, such as hairpins, or when replicative 

polymerases are compromised [73].  

The high fidelity of eukaryotic replication is due to three features: correct base 

selection and exonucleolytic proofreading by Pol δ and Pol ε, and the action of MMR 

(reviewed in [7]). Base selectivity is largely due to the structure of the polymerase active 

site, which allows for accommodation of only base pairs with the correct geometry 

(reviewed in [74]). Complementary base pairs have different free energies than non-

complementary base pairs, and the error rate based on this alone is in the range of the low 

fidelity seen in TLS polymerases. Therefore, TLS polymerases are thought to have 

relaxed geometric selectivity, and so rely only on base-base hydrogen bonding for 

fidelity. Pol ζ has much lower fidelity that the other B-family polymerases in vitro, even 

when copying undamaged templates. All B-family members have exonuclease 

proofreading domains, but they are inactivated in Pol α and Pol ζ (Figure 3.1).  

The work in this dissertation will focus on two of these B-family polymerases, Pol 

δ and Pol ζ. 
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3.1.2 Subunit structure of DNA Polymerases δ and ζ 

Pol δ is a complex of four subunits in humans, and three in budding yeast (Table 

3.1) (reviewed in [7, 75]). In yeast, the largest subunit, Pol3, is the catalytic subunit 

containing the polymerase and exonuclease active sites and a binding motif for the 

processivity clamp PCNA. The essential second subunit, Pol31, serves as a stabilizer for 

Pol3 and tethers it to the third subunit, Pol32. Pol32 contains a PCNA binding motif and 

a motif that mediates interaction with Pol α. Yeast or chicken cells with deletion of Pol32 

show no severe growth defects, but yeast are UV-immutable and chicken cells show 

decreased mutagenesis in response to deaminase (AID) overexpression; this suggests a 

role for this protein in damage-induced mutagenesis [76, 77].  

Pol ζ was long thought to be comprised of only two subunits: Rev3 and Rev7 

[61]. However, it was recently discovered that the C-terminal domain (CTD) of the 

human catalytic subunit of Pol ζ binds two accessory subunits of Pol δ, p50/p66, and this 

predicted that human Pol ζ is a four-subunit complex (See Table 3.1 for nomenclature of 

human and yeast subunits) [78]. Four-subunit human Pol ζ was later purified from human 

cells and possessed polymerase activity superior to the two-subunit enzyme [79]. Yeast 

Pol ζ can also stably exist as a four-subunit enzyme, containing the catalytic subunit 

Rev3, accessory subunit Rev7, and Pol31/Pol32 (Figure 3.3) [80-82]. In this complex, 

Pol32 binds to Pol31, and Pol31 binds to the CTD of catalytic subunit Rev3 [51, 83-85]. 

During DNA damage bypass, Pol ζ is bound to the Y-family polymerase Rev1. Rev1 can 

act as an inserter, but its main role is thought to be as a scaffold for polymerase switches. 

It is believed, based on the structure of another B-family member, Pol α, and a 

low resolution EM structure of Pol , that the CTDs of both Pol3 and Rev3 are connected  
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Table 3.1: Nomenclature for yeast and human Pol δ and Pol ζ.  

Organism Subunit Gene Protein 

    

Polymerase δ 

Yeast Catalytic POL3 Pol3 

 B POL31 Pol31 

 C POL32 Pol32 

Human Catalytic POLD1 p125 

 B POLD2 p50 

 C POLD3 p66 

 Small 4
th

  POLD4 p12 

    

Polymerase ζ 

Yeast Catalytic REV3 Rev3 

 Accessory REV7 Rev7 

 B, C POL31, POL32 Pol31, Pol32 

Human Catalytic REV3L p353 

 Accessory REV7 p30 

 B, C POLD2, POLD3 p50, p66 
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Figure 3.3: Scheme of four-subunit yeast DNA Polymerase ζ, highlighting the CTD 

The catalytic subunit of DNA Polymerase ζ, Rev3, is thought to have a C-terminal 

domain which is attached by a flexible linker (no structure is available). This C-terminal 

domain contains a ZnF and an FeS cluster, the latter which is necessary for binding to 

Pol31. There are three accessory subunits: Rev7, Pol31, and Pol32. Pol31 and Pol32 are 

also subunits of replicative DNA Pol δ. 
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to the main catalytic domains by a flexible linker (Figure 3.3) [85, 86]. Both polymerases 

contain an FeS cluster in this domain [87], which is required for binding to Pol31/Pol32 

(Figure 3.3) [78, 80, 81]. In addition, the region downstream of the cluster is also 

important for this binding [80].  

3.1.3 Biological functions and regulatory roles of FeS clusters  

The discovery that Pol δ and Pol ζ contained FeS clusters opened a vast window 

to new regulatory options for these polymerases. FeS clusters are ubiquitous cofactors 

present in many proteins that have been shown to control diverse processes including 

DNA replication, photosynthesis, respiration, and gene regulation (reviewed in [12, 88]). 

They exist in different structural classes, involving anywhere from a single Fe atom to 

multiple Fe and S atoms coordinated by Cys, His, Asp, or Arg residues (Figure 3.4). FeS 

clusters are some of the most versatile prosthetic groups due to their redox properties. 

These clusters can carry out redox as well as non-redox catalysis and confer redox 

sensitivity on many gene regulators.  

FeS clusters perform many functions when present in proteins (reviewed in [12, 

88, 89]). The ability to localize electron density over both the Fe and S atoms makes 

these clusters ideal for their primary role in transferring electrons in the electron transport 

chain. They can also help shape enzyme active sites, assisting in substrate binding and 

catalysis. Sometimes their role is to maintain the structural integrity of the protein (more 

functions listed in Table 3.2). These clusters are inserted via special biosynthetic 

pathways and the clusters can be both a source and target of ROS. 

Relevant to this study, FeS clusters have been found to be essential components of 

diverse nucleic acid processing machinery including glycosylases, helicases, primases, 
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Figure 3.4: Types of FeS clusters 

This figure shows structures of different types of FeS clusters, highlighting the fact that 

they range from simple to very complicated. Each of these clusters can also exist in a 

variety of oxidative states, increasing their versatility. The clusters discovered in B-

family polymerases are of the [4Fe4S] type. Modified from [90]. 
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Table 3.2 Biological Functions of FeS Clusters (modified from [89]) 

Function of FeS cluster Examples of proteins 

  

Electron transfer Ferrodoxins; redox enzymes 

  

Coupled electron/proton transfer Rieske protein Nitrogenase 

  

Substrate binding and activation De-hydratases, radical SAM enzymes, 

Acetyl CoA synthase, Sulfite reductase 

Fe or cluster storage Ferrodoxins, Polyferrodoxins 

  

Structural Endonuclease III, MutY 

  

Regulation of gene expression SoxR, FNR, IRP, IscR 

  

Regulation of enzyme activity Glutamine PRPP amidotransferase, 

Ferrochelatase 

Disulfide reduction Ferrodoxin:thioredoxin reductase, 

Heterodisulfide reductase 

Sulfur donor Biotin synthase 
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transcription factors, nucleases, RNA polymerases, RNA methyltransferases, and recently 

DNA polymerases (reviewed in [12]). Roles of clusters in these proteins include 

structural roles, DNA binding, lesion detection, assembly, and helicase activity. One 

example is the FeS cluster present in the NER helicase XPD and its homologs: Chlr1, 

RTEL, and FancJ. Disease-causing mutations in these genes are often found to affect 

their FeS cluster. This cluster is thought to play a role in the structural integrity of these 

enzymes and in coupling of ATP hydrolysis to DNA translocation.  

Another classical example of FeS clusters in DNA processing enzymes is DNA 

glycosylases (reviewed in [12]). Some (not all) classes of glycosylases contain clusters 

that sense damage via DNA-mediated charge transfer. The FeS clusters of EndoIII and 

MutY glycosylases become redox active upon binding DNA. This allows reduction of 

their [4Fe-4S] cluster to the +3 oxidative state, stabilizing the enzymes in the DNA-

bound state and releasing an electron into the DNA base stacks. This electron can travel 

through the DNA to a distant FeS-containing glycosylase and promote its dissociation. 

This electron transfer is inhibited by the presence of intervening DNA lesions, thus 

targeting glycosylases to damage.  

3.1.4 Goal of this chapter 

Pol ζ is a central element in the DNA damage tolerance mechanism. To further 

understand the regulation and recruitment of Pol ζ to sites of DNA damage, we studied 

the function of the C-terminal domain (CTD) that contains the FeS cluster. In yeast and 

humans when the FeS cluster of Pol ζ is disrupted, there is loss of binding to the 

accessory subunit Pol31/p50 [78, 80]. It is possible that this cluster plays a structural role 

or that the switch is regulated by oxidation-reduction reactions [67]. To better understand 
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the mechanism of participation of Pol ζ in mutagenesis, we created several yeast strains 

with mutations affecting the CTD of Rev3 and measured their effects on UV-induced 

mutant frequency. We asked what role the FeS cluster of the catalytic subunit of Pol ζ, 

REV3, plays in UV-induced mutagenesis in yeast in vivo.  

3.2 Results 

3.2.1 Disruption of the FeS cluster in the C-terminus of Rev3 leads to a severe 

decrease in UV-induced mutagenesis 

 

UV-induced mutagenesis is an effective readout for TLS in yeast. Deletion of 

REV3, REV7, or POL32 results in complete loss of UV-induced mutagenesis. To better 

understand the role of Rev3, its subunits, and accessory proteins in TLS, we examined 

parameters of UV-induced mutagenesis in several strains with mutations affecting 

different parts of the protein (Figure 3.5A). A strain with the mutation rev3-dd, encoding 

catalytically inactive Pol ζ, served as a positive control. In this control strain two 

aspartates in the invariant DTD motif in region I of the active site (present in all B-family 

DNA polymerases) involved in catalysis were substituted to alanines, resulting in a 

catalytically inactive enzyme [7]. To measure mutagenesis, the popular canavanine-

resistance forward mutation assay was used, where mutations of various types in the 

CAN1 gene in yeast confer resistance to the toxic drug canavanine [91].  

The CTD of Rev3 contains two cysteine-rich metal binding sites, CysA and CysB 

[92]. CysA forms a zinc finger (ZnF) and CysB coordinates an FeS cluster (Figure 3.3) 

[78, 86]. In this dissertation, CysA will be referred to as ZnF and CysB will be referred to 

as FeS. Each of these metal binding sites has four Cys residues that coordinate the four 

metal ions. To study the function of these sites, we created yeast strains that had the four  
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Figure 3.5: The FeS cluster of Rev3 is important for survival and mutagenesis in 

response to UV irradiation 

  

A. Schematic view of Rev3 variants used in this study. B. Disruption of the FeS cluster, 

but not the ZnF, decreases survival and mutagenesis in response to UV damage. 

Experimental design for all mutagenesis experiments in this dissertation shown below 

graphs in B. WT (pink ●), rev3-dd (green ▲), rev3-ZnF (black ◇), rev3-FeS (blue ▽),), 

rev3-ZnF-FeS (purple ★). Data was collected and analyzed as described in Methods 

section 2.3 (three independent trials). All strains are described in Table 2.1. 
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Cys coordinating the ZnF or the Cys coordinating the FeS cluster replaced with Ala [78]. 

These strains were called rev3-ZnF and rev3-FeS. We also disrupted both clusters in a 

third strain (rev3-ZnF,FeS). 

Mutagenesis was measured in various rev3 mutants after exposure to increasing 

doses of UV radiation (UVR) (Figure 3.5B). Disruption of the ZnF motif of Rev3 had no 

effect on survival or mutagenesis. In contrast, disruption of the FeS cluster alone or both 

metal-binding sites resulted in severe reduction of mutagenesis and a drastic decrease in 

survival, similar to the catalytically inactive enzyme. Two other groups later confirmed 

these results [80, 81]. Therefore, the FeS cluster of the C-terminus of Pol ζ plays an 

important role in UV-induced mutagenesis. 

3.2.2 Strains with the rev3∆C mutation, lacking the entire C-terminus of Rev3, 

show robust mutagenesis at low UV doses and substantial, residual levels of 

mutagenesis at higher UV doses  

 

 Another variant of REV3 was created that encoded a protein lacking the entire 

CTD, thus completely removing both metal binding sites and the platform for binding to 

Pol31/Pol32 (Figure 3.5A). It will be further referred to as rev3ΔC. Since the critical FeS 

cluster was missing, it was expected that this strain would display complete loss of UV-

induced mutagenesis. Intriguingly, at low UV doses rev3ΔC showed robust induced 

mutagenesis levels, comparable to WT REV3 (Figure 3.6). At higher UV doses, it 

retained residual mutagenesis. Residual mutagenesis was about 60% of WT levels at the 

intermediate dose of 40J/m
2
 and only about 10% of WT levels at the highest dose of 60 

J/m
2
. The observed mutant frequencies in treated and untreated cultures are shown in 

Table 3.3 as an illustration of the magnitude of UV-induced mutagenesis. 
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Figure 3.6: The rev3ΔC strain shows robust mutagenesis at low doses of UV 

irradiation and retains residual mutagenesis at high doses 

 

A. Patch test illustrating the effect of rev3 mutations on UV-induced mutagenesis (see 

section 2.4). Visible colonies represent Can resistant mutants induced by UV. B. WT 

(pink ●), rev3ΔC (orange ■), rev3-dd (green ▲), rev3-FeS (blue ▽). Data was collected 

and analyzed as described in Methods section 2.3 (three independent trials). All strains 

are described in Table 2.1.  
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Table 3.3 rev3ΔC strain shows robust mutagenesis at low doses of UV irradiation 

and retains residual mutagenesis at high doses. 

 

Strain UV 

Treatment 

(J/m
2
) 

Percent 

Survival
x
 

Mutant Frequency 

(x10
-6

)
y
 

Induced Mutant 

Frequency (x10
-6

)
y
 

     

8C WT 0 100.0 ± 6.7 1 ± 0.4
 

- 

 20 69.2 ± 0.9 87 ± 12 86 ± 12 

 40 23.8 ± 3.0 299 ± 42 298 ± 42 

 60 7.4 ± 7.0 701 ± 137 700 ± 137 

     

rev3-dd 0 100.0 ± 8.8 0.8 ± 0.6 - 

 20 4.6 ± 0.0 1.7 ± 1.7 1 ± 1 

 40 3.9 ± 0.0 1.9 ± 1.2 1 ± 1 

 60 2.0 ± 0.1 7.5 ± 5.4 7 ± 5 

     

rev3∆C 0 100.0 ± 8.6 0.8 ± 0.2 - 

 20 20.6 ± 1.3 130 ± 9 129 ± 9 

 40 4.8 ± 1.7 168 ± 33 167 ± 33 

 60 2.7 ± 0.6 65 ± 15 64 ± 15 

     

rev3-FeS 0 100.0 ± 15.8 0.8 ± 0.2 - 

 20 6.7 ± 0.4 38.8 ± 18.5 38 ± 18 

 40 4.1 ± 0.1 7.4 ± 3.6 7 ± 3 

 60 2.5 ± 0.1 13.1 ± 11.0 12 ± 11 

     
    x

values are mean ± SD in %  
    y

values are mean ± standard deviation (SD) 

   Data are averages of 4 independent trials 
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3.2.3 Residual mutagenesis in rev3ΔC strains is dependent on the catalytic activity 

of Rev3 

 

Disruption of the FeS cluster led to a severe loss of mutagenesis, but removal of 

the domain containing the cluster maintained decent mutagenesis levels. To rule out the 

possibility that another polymerase is recruited to assist Rev3ΔC and is responsible for 

the mutagenesis seen in the rev3ΔC strain, a mutant was created that was catalytically 

inactive and lacked the CTD of Rev3 (rev3ΔC-dd). If another polymerase was 

responsible for the residual mutagenesis, this mutant strain would behave like rev3∆C. 

However, the double mutant was hypersensitive and UV-immutable, similar to the 

catalytically inactive single mutant, rev3-dd (Figure 3.7). This demonstrates that the 

residual mutagenesis seen in rev3ΔC strains is dependent upon the catalytic activity of 

Rev3. 

3.2.4 Rev3 variants with CTD alterations are not differentially degraded  

It is formally possible that the Rev3ΔC protein is more stable than the other 

mutants or the WT holoenzyme, and thus being more abundant can participate in UV-

induced mutagenesis despite missing subunits. However, we did not detect any 

substantial differences in Rev3 protein levels in the soluble fraction of extracts of the 

strains overexpressing REV3 or various rev3 mutant alleles by Western blot analysis 

(Figure 3.8A). Furthermore, artificial overexpression of rev3ΔC from a galactose-

inducible promoter did not significantly increase survival or levels of mutagenesis in the 

rev3ΔC strain (Figure 3.8B).  
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Figure 3.7: Induced mutagenesis in the rev3ΔC strain is dependent on the catalytic 

activity of Rev3  

 

A. The rev3ΔC-dd mutant was hypersensitive and immutable; demonstrating that 

mutagenesis in rev3ΔC is dependent on the catalytic activity of Rev3. 8C WT (pink ●), 

rev3-dd (green ▲), rev3ΔC (orange ■), rev3ΔC-dd (blue ▽). Data was collected and 

analyzed as described in Methods section 2.3 (three independent trials). All strains are 

described in Table 2.1.  
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Figure 3.8: Rev3 protein in mutants is not differentially degraded, and mutagenesis 

levels are not increased by overproduction of Rev3ΔC  

 

A. Western blot analysis of the overproduced CTD mutants of Rev3. There was only a 

slight increase in the levels of Rev3ΔC over WT Rev3. B. Artificial, robust 

overexpression of rev3ΔC over WT has no effect on mutagenesis. WT + vector (pink ●), 

rev3Δ+ vector (green ▲), rev3ΔC + vector (orange ■), rev3Δ + rev3ΔC↑ (blue ▽). Data 

was collected and analyzed as described in Methods section 2.3 (three independent trials). 

All strains are described in Table 2.1.  
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3.2.5 rev3 mutations do not exert a dominant negative phenotype in UV-induced 

mutagenesis 

 

To test whether the mutagenesis defects could be due to direct interference with 

damage bypass, we tested whether some rev3 mutations lead to a dominant negative 

effect in strains with WT Rev3. We found that the presence of rev3ΔC, rev3-FeS, or 

rev3-dd on overexpression plasmids (see section 2.2) in the WT strain (8C-YUNI101, see 

Table 2.1 and 3.3 for description of rev3-dd mutant) did not affect UV-induced 

mutagenesis (Figure 3.9). Therefore, rev3 mutants examined were not dominant negative 

and equally unable to compete with WT Pol . It was verified that expression of GST 

tagged WT Rev3 was able to complement rev3∆, thus the GST tag does not interfere with 

polymerase function (data not shown).   

3.3 Discussion 

In this chapter, we examined several mutations affecting the functionally 

significant CTD of Rev3. Mutation of the FeS cluster in the CTD of Rev3 severely 

decreases UV-induced mutagenesis (Figure 3.5) and has been shown to eliminate binding 

to Pol31 [78, 81]. These data suggests that the FeS cluster is essential for UV-induced 

mutagenesis, and that one of the functions of the cluster is to directly participate in 

binding with Pol31 or maintain the structural integrity of the CTD such that it can bind 

Pol31. Whether this cluster is redox active in vivo or not remains to be determined. 

We discovered and further characterized a novel mutation affecting Pol ζ, 

rev3ΔC, which provides new insight into the regulation of Pol ζ during TLS. The rev3ΔC 

strain shows robust mutagenesis at low UV doses and substantial mutagenesis at higher 

doses. This mutagenesis is dependent upon the catalytic activity of Pol ζ (Figure 
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Figure 3.9: Effects of rev3 mutations on UV mutagenesis alone and in the presence 

of WT REV3  

 

WT strains additionally expressing mutant variants of Rev3 exhibit WT levels of survival 

and mutagenesis. Strains possess WT REV3 in the chromosomal location and mutant rev3 

on an expression plasmid. WT + vector (pink ●), rev3ΔC + vector (orange ■), rev3-FeS + 

vector (green ▲), WT + rev3-dd↑ (blue ▽), WT + rev3ΔC↑ (black ◇), WT + rev3-FeS↑ 

(purple ★). Data was collected and analyzed as described in Methods section 2.3 (three 

independent trials). All strains are described in Table 2.1. 
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3.6). This intermediate effect on induced mutagenesis resembles effects of Rev3 

truncation mutants that retained the FeS cluster, but lacked binding to Pol31/Pol32 due to 

loss of a downstream region required for that interaction [80, 81]. It has not been 

formally demonstrated that Rev3∆C lacks binding to Pol31/Pol32, but it is very likely 

due to the facts presented previously (discussed more in section 4.3).  

It is intriguing that the rev3ΔC mutant allele that encodes for a protein with a 

deletion of the entire CTD (Figure 3.5A) has a much milder effect than rev3-FeS (Table 

3.3, Figure 3.6). Both mutants lack a functional FeS cluster and likely lack binding to 

Pol31/Pol32 (discussed in Chapter 4.3), so why are the phenotypes so different? The 

rev3∆C strain clearly demonstrates that though the FeS of Rev3 cluster is important for 

UV-induced mutagenesis, it is far from essential.  

We further investigated possible mechanisms to explain why rev3-FeS has a more 

severe phenotype than rev3∆C. One hypothesis was that Rev3-FeS is degraded in vivo. 

We used western blot analysis to show that Rev3-FeS is not preferentially degraded 

compared to Rev3∆C. It could also be that Rev3-FeS acts in a dominant negative fashion, 

actively decreasing mutagenesis by acting against other factors at the lesion site. 

However, we showed that neither Rev3-FeS nor Rev3∆C exert a dominant negative 

effect in the presence of WT Rev3 (Figure 3.9). This directly shows that mutants are not 

acting against WT Rev3. It also strongly suggests that they are not acting against any 

other TLS factors, since there was no phenotype even though the mutants were present in 

high excess over WT Rev3. This indicates that the different phenotypes of the these two 

mutants cannot be explained by different effects of the two proteins on the TLS complex; 

in the presence of WT Pol  they are both excluded from any transactions.  
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There are two major mechanisms in which these mutations may affect Pol ζ: they 

may affect the catalytic function of the enzyme or recruitment to sites of damage. More 

data is necessary to further probe these mechanisms. The crystal structure of Rev3 has 

not yet been solved, so it is unknown where the FeS cluster lies in relation to the catalytic 

site in three dimensional space. It has been shown biochemically that two-subunit Pol ζ 

(Rev3/Rev7) and the Rev3-FeS mutant are catalytically active in vitro [81], though much 

less than the WT, four-subunit enzyme. It has not been formally shown yet whether 

Rev3∆C is active. In terms of recruitment, Rev3∆C is functioning so it is clearly recruited 

in vivo at least to some extent; it is unknown whether Rev3-FeS is ever recruited to the 

DNA. Further investigation of these possibilities will yield mechanistic insight into the 

function of the CTD of Pol ζ as a whole as well as the specific functions of the FeS 

cluster (see section 6.2). 

3.3.1 Conclusions 

We have demonstrated that the CTD of the catalytic subunit of Pol ζ, Rev3, plays 

an important role in UV-induced mutagenesis. The role of this domain is complex, and 

the presence of an FeS cluster is not obligatory for all transactions. We have also 

discovered a novel mutant of Pol ζ that may represent an alternative regulatory 

mechanism. This will be further investigated in Chapter 4.  

 

*The data in this chapter were published in Siebler et al., 2014 [93]. 

  



50 

 

4 Genetic Regulation/Control of the Pol ζ Variant in Mutant 

rev3ΔC Strains 

 

4.1 Introduction 

As mentioned in Chapter 1, Pol ζ is responsible for 96% of UV-induced mutations 

and about half of all spontaneous mutations [7, 45]. Of course it does not act alone; many 

other proteins are also required for damage-induced mutagenesis. In order to understand 

how Pol ζ works, it is important to know what other proteins are involved in its regulation 

and recruitment. 

4.1.1 Proliferating cell nuclear antigen (PCNA) 

PCNA is central to many cellular processes and has been referred to as a master 

regulator (reviewed in [7, 26]). It interacts with more than 30 proteins, regulating a 

variety of DNA transactions: replication, DNA repair, DNA damage tolerance, MMR, 

BER, NER, chromatin assembly, epigenetic modification, and sister chromatid cohesion. 

PCNA exists as a homotrimer in yeast and humans, forming a ring structure with 

pseudohexameric symmetry. It can slide along DNA freely in both directions and is 

loaded to internal priming sites on DNA by the clamp loader replication factor C (RFC). 

One face of PCNA has sites for interaction with other proteins, and this face is always 

oriented toward the 3’ growing end of the DNA. This allows PCNA to act as a 

discriminator between new and old strands (for example during MMR) [94].  

Most important for our work are the roles of PCNA in DNA replication and DNA 

damage tolerance (reviewed in [7, 26, 39, 95]). During replication, PCNA tethers 

replicative Pol δ firmly to DNA and by doing so, drastically increases its processivity. It 
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has also been shown to enhance the bypass activity of four subunit Pol ζ. As discussed in 

section 1.4, PCNA plays a very important role in determining which branch of DNA 

damage tolerance will occur. Monoubiquitylation of PCNA at Lys 164 favors TLS, 

polyubiquitylation signals for error-free damage avoidance, and sumoylation inhibits 

RAD52 dependent recombination pathways. Not only do these modifications help decide 

the pathway, they are also necessary for downstream transactions. In yeast, a mutation 

leading to a change of Lys 164 to Arg (K164R) eliminates ubiquitylation and Pol ζ-

dependent UV-induced mutagenesis. 

4.1.2 Y-family Polymerase Rev1  

Rev1 is a DNA-dependent deoxycitidyltransferase belonging to the Y-family of 

DNA polymerases. This family in yeast includes low fidelity polymerases Pol η and 

Rev1 (reviewed in [7, 96]). The main role of these polymerases is in the bypass of 

damaged DNA. The active site of Y-family polymerases is much more open and solvent 

accessible, accounting for their low fidelity and ability to incorporate bases across from 

lesions. These polymerases have an extra domain called the “little finger” (or polymerase 

associated domain (PAD), or wrist), which plays a role in interaction with DNA. 

 Rev1 is required for damage-induced mutagenesis in yeast and human cells. Its 

deletion eliminates all mutagenesis. Rev1 can participate in this process through its 

enzymatic activity; Rev1 primarily catalyzes the incorporation of C opposite a template G 

(reviewed in [9, 97]). This is due to the fact that Rev1 has a strong structural preference 

for both a template G and incoming C. The “N-digit” of Rev1 is responsible for this 

selection: Arg324 selects an incoming C because it forms steric clashes with other bases. 

Leu 325 flips out the template G, and forms hydrogen bonds with it that cannot be made 
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with other bases. This “flipping out” allows for accommodation of some damaged G 

residues as well as AP sites (which provide no steric hindrance) in the template.  

However the main role of Rev1 in TLS is not due to its catalytic function, but 

rather to its structural role (reviewed in [7, 9]). Rev1 is notable among TLS polymerases 

for its multiple binding partners and several protein-protein interaction modules. 

Mutations affecting the catalytic site of Rev1 have little effect on induced mutagenesis, 

whereas strains with a defective BRCT protein interaction domain of Rev1 are 

immutable. Rev1 can also stimulate the activity of Pol ζ in vitro. The current model is 

that Rev1 functions as scaffold for various DNA damage response proteins, helps localize 

TLS complexes to sites of DNA damage, and modulates polymerase switching at lesion 

sites through its ability to bind many TLS polymerases.  

4.1.3 Pol32  

Yeast strains with pol32∆ are cold sensitive, show defects in DNA replication, 

sensitivity to replication inhibitors and DNA damaging agents, and are defective for UV- 

and MMS-induced mutagenesis ([98]; reviewed in [51]). Due to its nature as a member of 

both replicative Pol δ and TLS Pol ζ, it plays important roles in ensuring genome stability 

and in mutagenesis. Work is currently being done in many groups to define roles of Pol32 

associated with each polymerase.  

4.1.4 Subunit sharing model of DNA polymerase switching during TLS 

The existence of shared Pol31/Pol32 subunits was the basis for the proposal of a 

novel mechanism of switching between Pol δ and Pol ζ, through an exchange of the 

catalytic subunits on Pol31/Pol32 bound to PCNA (Figure 4.1) [78]. In the  
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Figure 4.1: Models of polymerase switching during TLS  

A. Classic two-event polymerase switch model. There is a switch from Pol δ to a TLS 

complex comprised of Rev1 and Pol ζ. After insertion of a nucleotide opposite the lesion 

by a member of this complex, Pol ζ extends the primer. Rev1 also acts as a scaffold. B. 

Illustration of the switch from Pol δ to Pol ζ in the new variant of polymerase switch 

model utilizing the exchange of Pol31/Pol32 subunits. The catalytic subunit of Pol δ 

(Pol3) dissociates from the DNA and Rev3/Rev7 binds to the Pol31/Pol32 still left on 

DNA. Other steps are the same as in A. Note: There is also a two-polymerase switch 

model, shown in general in Figure 1.2. 
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classical view, the whole polymerase complexes substitute for one another (Figure 4.1A). 

In this new scenario, Pol δ stalls at a lesion, which signals for PCNA monoubiquitylation 

by the Rad6/Rad18 complex. Then only the catalytic subunit of Pol δ, Pol3, dissociates 

(and/or is degraded [99]) and Rev3/Rev7 is recruited to Pol31/Pol32 left at the lesion site. 

This mechanism provides an easy, yet unproven, possibility for a switch back to Pol3 for 

processive synthesis if necessary (more in section 4.3). In this model, Pol δ plays a role in 

TLS by regulating the entire switch process. Indeed it has been shown that Pol32 plays a 

role in TLS independent of Pol ζ [76]. 

4.1.5 Maintenance of Genome Stability 1 (Mgs1) 

Another important factor examined in this chapter is Mgs1. Mgs1 is an enigmatic 

regulator of TLS, an ATPase that plays a role in maintaining genomic stability in yeast by 

an unknown mechanism. Mgs1 has been shown to have both DNA-dependent ATPase 

and DNA annealing capabilities [100]. The human homolog of Mgs1, WRNIP1, interacts 

with the Werner helicase which is altered in the premature aging disease Werner’s 

syndrome. Genetic evidence strongly suggests that Mgs1 plays roles in maintaining 

proper DNA topology and in error-free post-replication repair (PRR), both of which 

contribute to genomic stability [100]. 

In yeast, deletion of Mgs1 results in an increase in the spontaneous recombination 

rate (inter- and intrachromosomal) and increased rDNA instability [100]. Mgs1 is 

targeted to sites of replication stress through interactions with monoubiquitylated PCNA 

[59, 101]. Overproduction of Mgs1 severely reduces MMS-induced mutagenesis [59] and 

eliminates UV-induced mutagenesis in yeast, suggesting that it acts as a negative 

regulator of TLS. Mammalian WRNIP1 stimulates replicative Pol δ in vitro and binds the 
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catalytic subunit p125 and the accessory subunits p50, and p12 [102], providing further 

evidence of the connection between Mgs1 and replication/repair pathways. Using genetic 

means, yeast Mgs1 has been shown to interact with Pol δ subunits Pol3 and Pol31. Since 

Pol31 is known to also be a subunit of Pol ζ, it is logical to assume that Mgs1 can bind 

Pol ζ as well. There are several ideas as to the role that Mgs1 plays in genome stability; 

one involves its potential role in shuttling the damage to different branches of DNA 

damage tolerance [103, 104].  

It has been suggested that Mgs1 shuttles toward error-free pathways, although it is 

unclear which ones specifically. Genetic evidence suggests that in addition to PRR and 

HR, there may be another alternative pathway to deal with DNA damage that is 

dependent on Mgs1. The rad6 rad52 and rad6 srs2 rad52 mutants, deficient in both HR 

and PRR, were still viable [103, 105, 106]. However, MGS1 deletion was incompatible 

with inactivation of HR and PRR (synthetic lethality of mgs1 rad18 srs2 rad51 and mgs1 

rad18 srs2 rad53 strains) [106]. The fact that the rad6 mgs1 mutant is inviable also 

suggests that Mgs1 is essential in the absence of PRR [107]. Together this data suggests 

that Mgs1 participates in a novel error-free pathway which is essential for growth when 

PRR and HR pathways are impaired [106].  

4.1.6 Goal of this chapter 

In this chapter, we further characterize the C-terminal truncation mutant, rev3ΔC, 

using it as a tool to probe our understanding of polymerase switches in vivo. Since this 

mutant lacks the regulatory CTD of Rev3, its phenotypes can shed light on the function 

of that domain and on how it functionally interacts with other proteins that regulate TLS 

as a whole. It is known that TLS in yeast is dependent on the presence of several proteins; 
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here we examine if these factors are also required for TLS in rev3∆C strains. We asked if 

Rev3∆C is being recruited by a novel mechanism free of some of the regulatory partners 

of WT Rev3. 

4.2 Results 

4.2.1 Spontaneous mutagenesis is unaffected in the rev3ΔC strain 

Yeast with rev3ΔC exhibit robust mutagenesis at low levels of UV irradiation, 

despite lacking the binding platform for Pol31/Pol32. Therefore, it could be free of some 

of the regulatory partners of WT Pol ζ. We wanted to test whether Rev3ΔC accessed 

DNA more frequently than WT Rev3 in the absence of DNA damage. We used 

fluctuation analysis to measure the spontaneous mutation rate in both strains. We found 

that rev3ΔC strains did not have increased levels of spontaneous mutagenesis compared 

to WT (Table 4.1). 

4.2.2 Residual UV mutagenesis in the rev3ΔC strain is dependent on Pol32, 

monoubiquitylation of PCNA, and Rev1 

 

As mentioned above, the presence of Pol32 and monoubiquitylation of the 

processivity clamp PCNA are known to be required for UV-induced mutagenesis in yeast 

[42, 77, 108]. Accordingly, in strains with the PCNA K164R variant that cannot be 

ubiquitylated, we observed decreased survival and suppressed UV-induced mutagenesis 

in both WT and rev3∆C strains (Figure 4.2A). Deletion of POL32 eliminated UV-

induced mutagenesis and decreased survival in the WT strain. Interestingly, we found 

that although rev3ΔC lacks the domain needed for binding Pol31/Pol32, Pol32 is still 

required for mutagenesis in the rev3ΔC strain (Figure 4.2A).  
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Table 4.1: Spontaneous mutation rates at two reporters are unaffected in the rev3ΔC 

strain. 

  

Strain CAN1 (x10
-6

) His reversion (x10
-8

) 

     

 Median* CL Median CL 

8C WT 1.05 0.84-1.43 3.05 1.38-4.32 

8C rev3ΔC 0.97 0.78-1.61 2.23 1.30-3.56 

     *eighteen independent cultures for each strain 

     ** CL – confidence limits 
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Figure 4.2: UV induced mutagenesis in the rev3ΔC and WT strains is under similar 

genetic control 

 

A. Survival and mutagenesis of WT and rev3ΔC strains are both dependent upon 

monoubiquitylation of PCNA and the presence of Pol32. WT (pink ●), rev3ΔC (orange 

■), pol30-K164R (green ▲), rev3ΔC pol30-K164R (blue ▽), pol32Δ (black ◇), rev3ΔC 

pol32Δ (purple ★). B. Survival and mutagenesis are dependent upon the presence of 

Rev1. 8C WT (pink ●), rev3ΔC (orange ■), rev1Δ (green ▲), rev3ΔC rev1Δ (blue ▽). 

Data was collected and analyzed as described in Methods section 2.3 (three independent 

trials). All strains are described in Table 2.1. 
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Rev1 binds to the Rev7 subunit of Pol ζ and to PCNA. These interactions could facilitate 

mismatch extension by Pol ζ during TLS [109]. Deletion of REV1 reduced survival and 

eliminated UV-induced mutagenesis in both WT and rev3ΔC strains (Figure 4.2B).  

4.2.3 Overexpression of REV1 has little effect on UV-induced mutagenesis 

It is possible that Rev1 is the only anchor holding Rev3ΔC to PCNA, since this 

variant of Rev3 has lost one major mode of interaction with PCNA through Pol31/Pol32. 

In this case, an increase in the concentration of Rev1 could elevate the chances of this 

backup interaction and increase mutagenesis. To test this, the effects of overproduction of 

Rev1 were investigated. Overexpression of REV1 from a multicopy plasmid under the 

control of a galactose-inducible promoter did not affect survival and only slightly 

increased induced mutagenesis at high UV doses. It increased mutagenesis to the same 

degree in both WT and rev3C strains (Figure 4.3).  

4.2.4 Mgs1 is a negative regulator of Pol ζ in UV mutagenesis 

It is known that overexpression of the ATPase MGS1 lowers survival and severely 

decreases MMS-induced mutagenesis in cells with WT Rev3 [59]. We found the same 

effect for UV-induced mutagenesis (Figure 4.4A). Interestingly and unexpectedly, 

overproduction of Mgs1 had no effect on survival or the residual levels of mutagenesis 

seen in rev3ΔC (Figure 4.4A). MGS1 deletion had no effect on UV sensitivity or induced 

mutagenesis in WT or rev3ΔC strains (Figure 4.4B). Deletion of MGS1 was reported to 

abrogate the growth defect of pol32∆ cells. A preliminary experiment was done to test 

UV sensitivity and mutagenesis in mgs1∆ pol32∆ double mutants, but they behaved just 

like pol32∆ (data not shown). Therefore deletion of MGS1 only rescues some pol32∆  
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Figure 4.3: Overexpression of REV1 has little effect on UV-induced mutagenesis 

Overexpression of exogenous Rev1 does not elevate mutagenesis at high doses of UV in 

WT and rev3ΔC strains. WT + vector (pink ●), WT + REV1↑ (light teal ○), rev3ΔC + 

vector (orange ■), rev3ΔC + REV1↑ (green ▲), rev1Δ + vector (blue ▽), rev1Δ + 

REV1↑ (black ◇), rev3-FeS + vector (purple ★), rev3-FeS + REV1↑ (red □). Data was 

collected and analyzed as described in Methods section 2.3 (three independent trials). All 

strains are described in Table 2.1.  
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Figure 4.4: rev3∆C truncation mutant is insensitive to suppression of UV-induced 

mutagenesis by overexpression of MGS1 

 

A. Overexpression of MGS1 suppresses mutagenesis only in the WT strain. 8C WT (pink 

●), rev3ΔC (orange ■), MGS1↑ (green ▲), rev3ΔC MGS1↑ (blue ▽). A. Insert: PCR 

analysis confirms the correct integration of an MGS1 expression cassette in WT and 

rev3∆C strains. The forward primer had homology to the plasmid backbone sequence and 

the reverse primer had homology to the beginning of the MGS1 gene; these primers 

amplify a region of about 1.3 kb. Lanes 1 – DNA ladder, 2 – blank PCR sample (no DNA 

added), 3 – 8C WT DNA, 4 – rev3ΔC DNA, 5 – WT + MGS1↑ DNA, 6 – rev3ΔC + 

MGS1↑ DNA. B. Deletion of Mgs1 has no effect on mutagenesis in WT and rev3∆C 

strains. 8C WT (pink ●), rev3ΔC (orange ■), mgs1Δ (green ▲), rev3ΔC mgs1Δ (blue ▽). 

Data was collected and analyzed as described in Methods section 2.3 (three independent 

trials). All strains are described in Table 2.1. 
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defects. 

4.2.5 Deletion of MGS1 has no effect on spontaneous mutagenesis in CAN1 

It has been shown that deletion of MGS1 increased the spontaneous mutation rate 

in a stop codon reversion assay [110]. We re-examined this in two yeast strains, BY4742 

and 8C, using the CAN1 forward mutation reporter gene. There was no difference in the 

spontaneous mutation rate when MGS1 was deleted alone or in combination with rev3∆C 

(Table 4.2). 

4.2.6 Mgs1 expression levels are modulated by DNA damage stimuli 

Mgs1 negatively regulates the function of four-subunit WT Pol ζ, but only under 

conditions of overexpression. The Saccharomyces Genome Database (SGD) was mined 

to determine if overexpression of MGS1 occurs under physiological conditions in yeast, 

particularly with respect to DNA damage. This database provides information from 

thousands of microarray datasets and pools them according to the level of expression 

change and how many conditions were found to elicit that response. The resulting figure 

was inconclusive. However, the database can identify genes that show expression profiles 

that are similar to Mgs1. Interestingly, it was found that Mgs1 shows a correlation with 

the expression pattern of the gene encoding the mismatch repair protein PMS1 in 

seventeen different datasets and a correlation with RAD30, encoding for DNA Pol η, in 

sixteen datasets (Figure 4.5). This is consistent with previous data suggesting that Mgs1 

plays a role in promoting error-free damage bypass.  
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Table 4.2 Deletion of Mgs1 has no effect on spontaneous mutagenesis in CAN1 

 

 CAN1 (x10
-7

) 

 CAN** CL 

BY WT 1.52 0.92-21.0 

BY rev3∆C 1.28 1.11-1.97 

BY mgs1∆ 1.53 1.16-2.59 

BY rev3∆Cmgs1∆ 3.47 2.34-11.6 

8C WT 1.86 1.23-3.36 

8C rev3∆C 1.44 1.36-2.09 

8C mgs1∆ 2.63 1.80-3.27 

8C rev3∆Cmgs1∆ 2.65 2.09-3.37 

                    *CL – confidence intervals 
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Figure 4.5: Mgs1 shows a similar expression pattern to DNA Polymerase η 

 

Map showing genes with expression profiles most similar to Mgs1 (SGD), meaning the 

expression patterns of these two genes were induced/repressed in response to the same 

conditions. Color of the text indicates the number of studies that showed positive 

correlation between the specified gene and Mgs1. Green – 15, Black – 16, Blue – 17. 
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4.3 Discussion  

4.3.1 Pol32 behaves differently as a subunit of Pol δ vs Pol ζ 

For a long time it has not been well-understood why a subunit of Pol δ, Pol32, is 

required for TLS. Now it is clear that Pol31/Pol32 are also subunits of Pol ζ, though they 

appear to interact differently in comparison to the interaction with the catalytic subunit of 

Pol δ, as discussed in [80, 81]. This observation led to a simple explanation for why 

Pol32-deficient cells are immutable: because Pol32 is a subunit of Pol ζ. This is 

consistent with the fact that the FeS-less Pol ζ variant lacks binding to Pol31/Pol32 and 

confers immutability. However, the data presented here suggest that the scenarios of 

polymerase switches are more elaborate and complex. 

We found that even though the protein in the rev3ΔC mutant lacks the region 

required for binding to Pol31/Pol32, the strain is still quite proficient in UV-induced 

mutagenesis. The effect of rev3ΔC is recessive, because it could be seen only when no 

WT REV3 was present in the genome (Figure 3.8). This is consistent with observations 

that two subunit Pol ζ (Rev3/Rev7) is active in vitro, albeit less active than 4-subunit 

Pol ζ [81, 111]. Thus, Pol32 is not critical for elementary Pol ζ function.  

Despite the fact that the rev3ΔC mutant most likely is not utilizing Pol32, we 

found that mutagenesis in the rev3ΔC strain is absolutely dependent on Pol32. This 

strongly suggests that the immutability of pol32Δ strains at least partly reflects an 

additional role of Pol32 in TLS related to Pol δ, because the loss of this subunit of Pol δ 

prevents UV-induced mutagenesis independent of its binding to Rev3. Indeed, in support 

of this idea it was recently shown in chicken cells that the Pol32 homolog can promote 
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TLS independent of Pol ζ [76]. This phenomenon of cross-talk between replicative and 

TLS polymerases better fits the initial step of the switch model depicted in Figure 4.1B. It 

appears that Pol32-less Pol δ is unsuitable for a proper switch to Pol ζ. This is consistent 

with the fact that the pol3-13 mutation, leading to a change of one cysteine involved in 

FeS binding in the CTD of Pol δ, leads to suppression of UV mutability ([112] and 

(Stepchenkova, Siebler, and Pavlov, unpublished data)).  

It is generally assumed that Pol δ is involved only in lagging DNA strand 

replication [72]. However, TLS events occur by the same mechanism on both DNA 

strands in a yeast system with a damaged plasmid [113]. In this context it is interesting 

that deletion of POL32 eliminates all mutagenesis, suggesting that Pol32 is required for 

TLS events on both strands. Our data suggest that Pol ζ is active without Pol32 and that 

the effect of pol32Δ is partly due to it being part of Pol δ. If Pol ε is fully responsible for 

the whole leading strand, then it is difficult to explain why missing components of Pol  

attenuate mutagenesis on this strand. This supports the idea that Pol δ is also involved in 

leading strand replication [70] or that the polymerase switch involves a complex event: 

Pol ε switching to Pol δ and then to Pol ζ. Another possibility is that Pol  is involved in 

mutagenesis by taking over synthesis from Pol ζ or filling the gaps resulting from re-

initiation of DNA synthesis after TLS downstream of Pol ζ [33, 37]. 

A recent paper suggested that Rev7 of Pol ζ can bind to Pol32 in vitro, which 

would indicate that Rev3ΔC could hold on to this interaction [85]. This interaction 

appears to be weak, because Rev7 was not pulled down with Pol32 by tagged Pol31 [80]. 

Furthermore, mutations in POL31 abolishing the interaction between Pol31 and Pol32 

lead to UV-immutability, despite the fact that Pol32, per se, is untouched [83]. The fact 
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that we do not see substantial levels of mutagenesis in rev3-FeS suggests that this cluster 

has another function besides binding Pol31/Pol32 or that the interaction between Pol32 

and Rev7 is insufficient for Pol ζ function.  

4.3.2 Dependence of rev3∆C on Rev1 

Another important member of the TLS machinery is Rev1. It interacts with Rev3 

via the Rev7 subunit [114]. Mutagenesis in rev3ΔC is dependent on Rev1 which indicates 

that Pol ζ with truncated Rev3 is recruited by Rev1, a scaffold protein during regular 

TLS. It is likely that the Rev1 interaction with Pol ζ is the reason that we see intermediate 

mutagenesis in rev3ΔC (Figure 4.6). WT Pol ζ can contact PCNA through both Rev1 and 

Pol31/Pol32, therefore there is robust TLS [115]. It is possible that rev3-FeS is unable to 

bind PCNA not only through Pol31/Pol32, but also through Rev1 due to steric hindrance 

caused by the absence of the FeS cluster in the CTD of Pol . Rev3ΔC lacks sufficient 

binding to Pol31/Pol32, but can still maintain its contact with Rev1. This is sufficient for 

supporting some TLS functions and for mutagenesis at low doses, but confers a partial 

defect at higher doses. To explore this hypothesis, we tested whether overproduction of 

Rev1 would increase UV- induced mutagenesis in rev3ΔC strains, but found no such 

influence (Fig. 4.3C). Therefore, simple increase of Rev1 levels cannot compensate for 

the lack of subunits. It appears that chromosomal REV1 is sufficient to fulfill the demand 

of the Rev1 protein after UV irradiation in both WT and rev3C strains.  

4.3.3 Novel, negative regulation of four-subunit Pol ζ by Mgs1 

In most of our experiments, the genetic control of mutagenesis in the rev3ΔC 

strain was very similar to the WT strain. However we found one modulator of TLS, 
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Figure 4.6 A model for differences between rev3-FeS and rev3∆C 

A. WT Pol ζ (light blue circles) is able to make two contacts with the processivity clamp 

PCNA (ring): one through Rev1 (green oval) which can bind monoubiquitylated PCNA 

and one through Pol31/Pol32 (purple and orange ovals, respectively). B. rev3-FeS cannot 

bind Pol31/Pol32, and perhaps the misfolded CTD (blue star) provides steric hindrance 

that also blocks the Rev1 interaction with PCNA, leaving no interaction and thus no 

mutagenesis. C. rev3∆C cannot make the contact though Pol31/Pol32, but has no 

misshapen CTD so can hold on to the interaction with Rev1. This interaction alone is 

sufficient to support lower levels of mutagenesis, but cannot keep up at higher doses 

(giving residual mutagenesis phenotype). 
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encoded by the gene MGS1, that behaved differently. Overproduction of Mgs1 severely 

reduces MMS-induced mutagenesis [59] and eliminates UV-induced mutagenesis (Fig. 

5A) in yeast, suggesting that it can act as a negative regulator of TLS. However we found 

that overproduction of Mgs1 had no effect on mutagenesis in the rev3ΔC strain.  

Deletion of MGS1 abrogates the growth defect of pol32Δ, pol3Δct, and pol31 

mutant cells, suggesting that in the context of damage sensitivity Mgs1 is an effector of 

Pol  [59, 104]. It was also previously proposed that Mgs1 could compete with Pol32 for 

binding to PCNA, as overproduction of Mgs1 reduced the yeast two-hybrid interaction 

between Pol32 and Ub-PCNA [59]. Therefore it is possible that Pol32 could be knocked 

off of PCNA by Mgs1, resulting in lack of mutagenesis. However, we show here that 

overexpression of Mgs1 has no negative effect in the rev3ΔC strain. This result suggests 

that in the context of UV-induced mutagenesis, Mgs1 exerts its inhibitory effect by acting 

specifically on Pol32 bound to Pol ζ, not Pol δ (Figure 4.7). This is the first time that 

Mgs1 and Pol ζ have been implicated to functionally interact. It is well established that 

Mgs1 is a negative regulator of TLS, and we propose based on our data that one of the 

primary mechanisms could be through inhibition of Pol ζ.         

If the inhibition by Mgs1 occurs through this proposed Pol32 competition 

mechanism, this result also argues against a strong interaction between Pol ζ and Pol32 

through Rev7 binding to Pol32 (see above). If that were the case, Rev3ΔC would still be 

bound to Pol32 and Mgs1 would compete with it for binding, thus decreasing UV-

induced mutagenesis in that strain. Consistent with the data in the literature [110], we 

found that deletion of MGS1 had no effect on induced mutagenesis (Figure 4.4A). This 

was also true for the rev3ΔC strain (Fig. 5B).                                           
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Figure 4.7 Model of Mgs1 inhibiting four-subunit Pol ζ through competition with 

Pol32 

 

A. When Mgs1 is at high levels, it can compete with Pol32 for binding to PCNA. 

Because Pol ζ is rigid and comprised of all four subunits, this results in the entire enzyme 

being displaced and there is no mutagenesis. B. Rev3∆C does not interact strongly with 

Pol31/Pol32, therefore Mgs1 competing with Pol32 has no effect on mutagenesis. C. 

When Mgs1 competes with binding of Pol32 that is bound to Pol δ, there is some innate 

flexibility that allows only Pol32 (and maybe Pol31) to be temporarily displaced. 
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If Mgs1 competes with Pol32 for binding to PCNA, this raises the question of 

why it preferentially affects involvement in mutagenesis of Pol ζ and not Pol δ, since both 

contain Pol32. As mentioned, the nature of these interactions is not identical. It was 

shown that Pol3 can form a stable complex with Pol31 alone, but Rev3 cannot [81]. A 

recent EM structure of Pol ζ may also give a clue to this differential binding nature [85]. 

Both Pol δ and Pol ζ contain catalytic and regulatory modules in their structures. 

However, there is flexibility between the two modules in Pol δ whereas four subunit Pol ζ 

appears to be more rigid. When Mgs1 displaces Pol32 of Pol δ, the flexibility may result 

in only Pol32 being temporarily displaced instead of the whole enzyme dissociating from 

PCNA (Figure 4.7). Because Pol ζ is rigid, Mgs1 competition with Pol32 may result in 

the whole polymerase being removed from PCNA. Another formal possibility is that 

during the polymerase switch, Pol31/Pol32 that are alone on the DNA are displaced, 

disrupting the switch. Since Rev3∆C cannot be recruited by Pol31/Pol32, it is still able to 

come to the DNA through another mechanism. 

It has also been suggested that Pols δ and ζ interact with PCNA differently. This 

was shown most clearly with a mutation affecting the monomer-monomer interface of 

PCNA, pol30-113 [47]. Yeast strains with this mutation show no growth defects or 

sensitivity to the replication inhibitor HU, suggesting that this PCNA variant is sufficient 

for replication. However, these cells are UV-immutable indicating defective TLS. In 

vitro, pol30-113 is an effective (albeit less than WT) processivity clamp for Pol δ, but not 

for Pol ζ [47].  

Mgs1 at normal physiological levels may not play an active role in UV-induced 

mutagenesis, since mgs1∆ did not affect mutation frequency. In order to determine if this 
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inhibition of Pol ζ by Mgs1 occurs in vivo, data on Mgs1 expression under different 

conditions was mined from the Saccharomyces Genome Database 

(http://www.yeastgenome.org/). Mgs1 did not show a striking increase in expression in 

response to the various DNA damaging conditions examined, although UVR was not 

listed. However, in the data shown here Mgs1 overexpression eliminated mutagenesis in 

WT strains even in the absence of induction with galactose, suggesting that small 

increases may be sufficient for Mgs1 inhibition of TLS. Therefore it is possible that 

Mgs1 may be slightly overproduced and inhibit Pol ζ in vivo in response to some 

damaging conditions other than UVR in order to promote an error-free mechanism, such 

as DNA damage avoidance by template switching or a novel pathway involving Mgs1.  

Expression profiles of Mgs1 correlated with profiles of RAD30, encoding the 

error-free TLS Pol η, and MMR protein IPMS1 in numerous studies. In chicken cells, it 

has been suggested that the homolog of Mgs1, WRNIP1, acts upstream of Pol η to 

promote its error-free bypass of UV-induced lesions. Deletion of WRNIP1 in this study 

rescued the phenotypes of Pol η deletion such as UV sensitivity, trouble eliminating 

CPDs, and slow progression of replication forks in response to damage [116]. This could 

provide an explanation for the expression correlation and suggests that one of the error-

free mechanisms driven by Mgs1 could be error-free TLS. The expression correlation 

data itself is interesting because it connects Mgs1 further to DNA damage and repair, but 

the significance of these similarities cannot be fully evaluated from the limited 

information available in the database. It is unclear what the connection between Mgs1 

and IPMS1/MMR are. 

http://www.yeastgenome.org/
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Another possibility is that Mgs1 at endogenous levels inhibits Pol ζ-dependent 

damage tolerance in the absence of damage, rather than in its presence since Pol ζ is so 

mutagenic. Indeed deletion of Mgs1 has been shown to increase spontaneous mutagenesis 

[110]; however, we were unable to confirm that result (Table 4.2). This could be because 

the action of Mgs1 could be site-specific. We utilized the CAN1 gene, which can detect a 

wide variety of mutations, but some weak effects in certain sites can remain undetected. 

The reversion system used in Shinagawa et al. detects only a narrow spectrum of changes 

[110]. 

4.3.4 Conclusions 

This study shows that Pol ζ can function in TLS in vivo despite the absence of its 

CTD, which serves as a platform for binding to Pol31/Pol32. The necessity of Pol32 in 

this mutant strain highlights the importance of Pol δ integrity in TLS since Pol32 is 

required even when not a member of Pol ζ. Furthermore, we have shown a novel 

inhibitory effect of the ATPase Mgs1 specifically on the four-subunit Pol ζ. Both Pol δ 

and Pol ζ have Pol32 as a subunit, but use it for somewhat different transactions. It is 

possible that Mgs1 can directly compete with Pol32 bound to Pol ζ for binding to PCNA 

and decrease induced mutagenesis, but does not compete with Pol32 of Pol δ.  

 

*Most of the data in this chapter were published in Siebler et al., 2014 [93]. 
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5 Spectra of UV-induced can1 Mutations in the rev3ΔC Strain 

 

5.1 Introduction  

5.1.1 UV-induced DNA damage  

DNA damage induced by UVR is one of the best characterized DNA 

damage/repair systems (reviewed in [2, 20, 117, 118]). It is well known that UVR-

induced damage is a major cause of skin cancer [119]. The major source of UVR for 

living organisms is solar irradiation, which is divided into three wavelength groups. UVA 

(315-400 nm) is the most prevalent and is least efficient at inducing DNA damage 

because it is not absorbed by DNA. However, it can produce secondary photoreactions 

and generate ROS such as singlet oxygen [120, 121]. The majority of solar UVB (280-

315 nm) radiation is filtered by atmospheric ozone, but because it is absorbed by cellular 

DNA it is the major contributor to DNA damage [122, 123]. 

All UVC (< 280 nm) radiation is blocked by ozone and is not normally 

dangerous, but the ozone layer is being depleted in some areas [124]. UVC could be 

generated by artificial sources, and thus lead to human exposure. Most mutation research 

has been done using UVC with an emission maximum at 254, close to the absorption 

peak for DNA (260) and not efficiently absorbed by proteins. UVC is an appropriate, 

though not ideal, experimental system to study UVR-induced mutagenesis because the 

major lesions induced by UVC are the same as those induced by UVA/UVB (but are 

induced more efficiently). One difference is that simulated sunlight (UVA/UVB) 

converts most 6-4PPs into Dewar isomers (see below) and additionally induces 8-oxoG 

lesions into DNA [63].  
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UVR is one of the most effective and carcinogenic exogenous agents that interacts 

with DNA and affects genome integrity (reviewed in [2, 20, 117]). The two most 

abundant mutagenic and cytotoxic DNA lesions induced by UVR are 1) cyclobutane-

pyrimidine dimers (CPDs) and 2) 6,4 photoproducts (6-4PPs) and their Dewar (valence) 

isomers (Figure 5.1). Both CPDs and 6-4PPs distort the DNA helix, which can be an 

impediment to replication and transcription. Damage caused by UVR can lead to 

mutagenesis, tumorigenesis, and cell death.  

CPDs are the most abundant and cytotoxic (apoptotic) lesions induced by UVR 

[125], making up close to 75% of UV lesions (reviewed in [2, 20, 117, 118]). CPDs are a 

four-carbon ring structure involving positions C5 and C6 of neighboring pyrimidines 

(Figure 5.1). CPDs remain roughly parallel but they lose their planar π electrons, lose 

aromaticity, and exhibit a 36º relative rotation [126]. DNA with a CPD is underwound 

and bent by about 30º at the lesion (buckled) [127]. Only the cis-syn conformation is 

allowed in the DNA duplex and it is the most common. Where CPDs occur in DNA 

depends on which dipyrimidine is involved, but also the surrounding sequence context. 

6-4PPs may be less cytotoxic than CPDs, but are more mutagenic and this 

mutagenesis can be lethal; they make up close to 25% of UV lesions (reviewed in  

[2, 20, 117, 118]). 6-4PPs are formed by a noncyclic bond between C6 of the 5’ end and 

C4 of the 3’ end of involved pyrimidines (Figure 5.1) [128]. They introduce prominent 

distortion in the double helical structure because the crosslinked pyrimidine bases are 

almost perpendicular to each other. This can cause segmentation of DNA (B-form 

regions of DNA separated by kinks) which is exacerbated when a mismatched base is 

inserted opposite the lesion. UV sources bordering UVA/UVB, such as sunlight, tend  
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Figure 5.1 UV-induced DNA lesions distort the DNA 

A. Scheme showing the major lesions induced by UVR: cyclobutane pyrimidine dimer 

(CPD), (6-4) photoproduct and its Dewar isomer. B. Scheme showing the 

distortion/bending of DNA by various types of UV lesions. Modified from [117, 129] and 

http://cosmobiousa.com/uvantibodies.html.  

  

http://cosmobiousa.com/uvantibodies.html
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to convert 6-4PPs to Dewar isomers [130-132]. 6-4PPs and their Dewar isomers cause 

helical bending of 44 º and 21 º, respectively [133]. Not surprisingly, 6-4PPs have been 

shown to correlate with mutational hotspots [134].  

Although CPDs and 6-4PPs are by far the most prominent lesions (especially 

from UVC), UVR has been shown to induce many other types of damage as well 

(reviewed in [2, 117]). UVR induced ROS (such as singlet oxygen and free radicals) can 

act as powerful oxidants leading to formation of a variety of oxidative lesions including 

8-oxo-7,8-dihydroguanyl (8-oxoG), 8-oxo-A, 2,6-diamino-4-hydroxy-5-

formamidoguanine (FapyGua), FapyAde, and oxazolone [122, 135] and can contribute to 

apoptosis [136]. UV-induced modifications of purines have also been observed, though 

less frequently [122, 137]. These are primarily AA dimers and TA photoproducts. 

Pyrimidine hydrates and thymine glycol can also be formed.  

DNA strand breaks are observed extensively under treatment with UVB and UVC 

(reviewed in [2, 117]). DSBs can affect both strands of DNA and lead to loss of genetic 

material; therefore they are the most deleterious form of DNA damage. It is believed that 

UVR does not directly create DSBs, but rather it creates other types of lesions that lead to 

replication fork collapse and subsequent formation of DSBs (reviewed in [138]). 

Simulated sunlight yields SSBs and alkali sensitive lesions, 8-oxoG, though CPD and 6-

4PP are still the predominant lesions. 

5.1.2 DNA Repair of UV lesions  

There are several repair pathways in cells that can deal specifically with damage 

induced by UVR. Photoreactivation by the enzyme photolyase is one of the most 

important and frequently used mechanisms (reviewed in [20, 117, 139]). Photolyases are 
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present in bacteria, fungi, plants, invertebrates, and many vertebrates but seem to be 

absent or nonfunctional in humans [140]. Photolyases bind specifically to CPDs, then 

directly monomerize the cyclobutane ring using the energy of visible/blue light. It is 

thought that some organisms also have 6-4PP photolyases. Efficiency of 

photoreactivation under proper conditions is extremely high.  

Dark repair pathways are more complex and replace the damaged DNA with new 

undamaged DNA, rather than reversing the damage. The major pathway in many 

organisms, including humans, that repairs UV-induced lesions and other helix distorting 

lesions is NER (introduced in section 1.3 and references therein, reviewed in [20, 117, 

118]). This pathway is widely conserved from prokaryotes to humans and is one of the 

most versatile and flexible repair systems. It has been hypothesized that changes in DNA 

rigidity due to lesions is the key factor in NER lesion recognition [141]. The severity of 

DNA distortion caused by UV lesions correlates with repair efficiency: 6-4PPs are more 

destabilizing than CPDs, and are more efficiently repaired ([142], reviewed in [118]). 

Both CPDs and 6-4PPs lose base stacking and thus reduce the persistence length 

(rigidity) of DNA (Figure 5.1).  

Some proteins may sense specific DNA lesions, but others conduct a “stress test” 

to see where the DNA is too flexible [118]. Briefly, ATP binding causes stress and bends 

DNA, and when ATP hydrolysis relieves the stress the damaged DNA responds by strand 

separation whereas undamaged DNA returns to B-form. Some other repair enzymes such 

as yeast photolyase and bacterial T4 endonuclease recognize distorted DNA using a 

concave surface at the active site, which approaches the minor groove only of DNA bent 

by a lesion. The lesion (CPD or 6-4PP) or the A’s opposite are flipped out from the  
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duplex into the active site for cleavage [131, 143, 144]. 

Other repair pathways can act on UV-induced damage other than CPDs and  

6-4PPs (reviewed in [117]). As mentioned, UVA can also induce oxidative damage 

through the production of ROS, and these lesions can be repaired by BER (introduced in 

section 1.3). HR and NHEJ can act to repair the DSBs that occur as secondary effects of 

UVR. HR is considered more accurate because it uses a homologous region of DNA, 

whereas NHEJ is error-prone because it joins broken chromosomal ends independent of 

sequence homology. It is also important to note that when damage occurs in cells, there 

can be activation of cell cycle checkpoints which can stop the progression of the cell 

cycle in order to provide more time for DNA repair. Cell cycle checkpoints can also 

induce apoptosis to eliminate damaged cells, avoiding carcinogenic potential. 

5.1.3 Error-free and error-prone bypass of UV-induced lesions  

In situations where repair does not occur before UV-induced damage is 

encountered by replication machinery, CPDs and 6-4PPs can cause replication fork arrest 

and ultimately cell death. Under these conditions, bypass of these lesions can be the only 

choice for cell survival and TLS is one of the major bypass mechanisms. The two main 

TLS polymerases that act upon damage induced by UVR in yeast are Pol η and Pol ζ (in 

complex with Rev1).  

Pol η is a member of the Y-family of DNA polymerases and is primarily involved 

in TLS events that lower the probability of mutations (frequently referred to as error-free) 

(reviewed in [9, 20, 118]). It is able to facilitate efficient and accurate bypass of CPDs, 

especially inserting A across from CPDs at TT sites [145, 146]. Most polymerases can 

only accommodate one template base in their active site; however Pol η can readily 
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accommodate two normal pyrimidine bases simultaneously, or a CPD for bypass. 

Efficiency of Pol η is increased on CPDs compared to normal T residues, so polymerase 

switching from Pol η to another polymerase like Pol ζ may occur as a transition from the 

preferential use of the damaged template to disfavored use of the undamaged downstream 

template [145]. The role of Pol η in bypass of 6-4PPs is more controversial. Most studies 

have shown that Pol η plays a minor role in bypass of these lesions (discussed in [63, 

147]) and it was shown that deletion of Pol η only decreased bypass of a plasmid 6-4PP 

by 7.5% [148]. However, one study found that strains lacking Pol η showed a 10-fold 

decrease in mutagenic bypass of a plasmid 6-4PP [149]. In yeast, Pol η transcripts are 

induced three- to four-fold in response to UV damage, although this was not seen in 

mice. Loss of Pol η results in the variant form of the cancer predisposition disease 

xeroderma pigmentosum (XPV).  

Even though Pol η can help avoid mutations when bypassing some lesions such as 

UVR photoproducts or 8-oxoG, it is one of the lowest fidelity polymerases on 

undamaged DNA. This property is exploited during somatic hypermutation in 

immunoglobulin genes (reviewed in [9, 20]). Pol η can synthesize DNA with low 

efficiency across other types of damage such as abasic sites, AAF, guanine adducts, 

benzo[a]pyrene adducts, and some cisplatin adducts. Pol η binds preferentially to 

monoubiquitylated PCNA, which can explain its recruitment. It can itself be 

ubiquitylated, but the functional significance of this is not well understood.  

Pol ζ plays a key role in error-prone bypass of UV-induced lesions (Pol ζ is 

reviewed in Chapters 1 and 3, and references therein). It has been suggested that in vivo 

Pol ζ plays a major role in bypassing 6-4PPs, but a minimal role in bypassing CPDs even 
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though it can inaccurately bypass a CPD lesion in vitro ([148, 150], discussed in [147]). 

This trend is opposite that of Pol η. As mentioned, Pol ζ is most efficient at extending 

from distorted termini that result from nucleotides inserted by other polymerases. Pol η 

and Pol ζ can act together on these lesions, with Pol η acting as the inserter and Pol ζ 

acting as the extender. This can result in the correct nucleotides being inserted across 

from the lesion, but Pol ζ may make errors during extension of the downstream region 

which can lead to mutations [38]. When Pol η is absent in yeast cells, mutagenesis 

induced by UVR is elevated, suggesting that Pol ζ can take over bypass of these lesions. 

Ninety six percent of UV-induced mutations are dependent on Pol ζ [45, 51]. However, to 

the credit of Pol ζ it should be mentioned that across some lesions, such as thymine 

glycol, Pol ζ can perform both insertion and extension in a way that prevents mutations 

(error-free) [9]. 

5.1.4 UV-induced mutational spectra  

Measuring mutational spectra can provide a wealth of information that cannot be 

discerned by simply measuring rates of mutagenesis in cells [147, 151, 152]. These 

spectra represent different types of mutations: base pair substitutions, frameshift 

mutations, and large gene rearrangements. Frameshifts include single or multiple base 

pair insertions and deletions that change the reading frame for transcription. Base pair 

substitutions are categorized as transitions or transversions. Transitions are changes from 

a purine to a purine or a pyrimidine to a pyrimidine, and there are two classes of these. 

Transversions are changes between purines and pyrimidines, and there are four classes. 

Within each class, the exact nucleotide change can also be examined. For example, a 



82 

 

nucleotide change from C to T belongs to the CG to TA class of transversions, and is a 

base pair substitution. 

Mutational spectra have been examined in the p53 gene in human skin cancers, 

which are primarily caused by UVR ([153], reviewed in [152, 154]). The gene encoding 

p53 is mutated in over 50% of human cancers and 50% of all skin cancer; there are 300 

potential detectable sites available for mutational analysis. Upon UVR, p53 levels are 

increased to block cells in the G1 phase of the cell cycle and allow for repair of DNA 

damage. Most mutations in p53 in skin cancers are CG to TA transitions (mainly C to T) 

and 90-96% of all base substitutions occur in dipyrimidine sites (TT, CT, TC, CC). This 

well-known UV signature is consistent with the fact that UVR primarily induces CPDs 

and 6-4PPs, occurring at these sites. Patients with XP have a very high percentage of the 

UV signature CC to TT tandem mutations as well.  

In this dissertation, mutational spectra in response to UVR were studied in a yeast 

model system. It has been shown that mutational spectra from skin tumors are very 

similar to spectra observed in UVR targets in model systems, but are different from 

spectra described in other cancers (discussed in [155]). When yeast were transformed by 

an irradiated vector containing human p53 cDNA, the UV spectrum was not significantly 

different from that found in patient non-melanoma skin tumors [155], highlighting the 

fact that yeast is a suitable model to study cancer-relevant UVR mutagenesis.  

In yeast, the CAN1 gene is often used to study such mutational spectra (discussed 

in [63, 147]). CAN1 encodes an arginine permease that transports the toxic drug 

canavanine into cells. Therefore, mutations that disable the permease can be selected for 

on media supplemented with canavanine. This system is able to detect all types of base 
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pair substitutions, deletions, insertions, and complex mutations. UVC-induced spectra in 

CAN1 consist predominantly of base pair substitutions and tandem and nontandem 

complex mutations ([63], discussed in [147]), these complex mutations being a signature 

of Pol ζ [8, 47, 48]. Frameshift mutations account for 5-20% of mutations (discussed in 

[147]). In UVC spectra, transversions were predominantly AT to TA, with GC to AT also 

present. Base substitutions in CAN1 occur mainly at dipyrimidines (89-97%) (roughly 

equal at TT, CC, TC and slightly less at CT) and there is bias for -1 over +1 frameshift 

mutations. This is the system utilized in the studies described here. 

5.1.5 Goal of this chapter 

This chapter addresses more specifically the UVR-induced mutagenesis defect 

seen in the rev3∆C strain. It known that Pol ζ creates point mutations that contribute to 

cancer, while preventing potentially tumorigenic chromosomal rearrangements (discussed 

in chapter 1). The goal of this chapter was to determine if the C-terminus of Rev3 might 

play a role in regulating different functions and mutational specificities of Pol ζ. We 

asked if rev3∆C is deficient at making all types of mutations or only certain types in 

response to UVR to help further define the extent to which the CTD of Rev3 regulated 

TLS.  

5.2 Results 

5.2.1 Rev3∆C is most proficient at participating in the formation of transitions 

 

As shown in Figure 3.6, the rev3∆C strain had a lower induced mutant frequency 

than the strain with WT Pol ζ at intermediate to high doses of UVR. To determine which 

specific types of mutations occur at a lower frequency in rev3∆C strains, an additional set 
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of mutagenesis data was collected. From this trial, 45-50 independent WT and rev3∆C 

clones were selected from SC+Can plates at each UV dose. The CAN1 gene was 

amplified from the DNA of these clones and sequenced (Figure 5.2). The frequencies of 

each type of mutation were compared between the two strains at three different UV 

doses. Figure 5.3 shows the average induced mutant frequency curves for WT and 

rev3∆C (average of new trial for sequencing and all trials from Figure 3.3). The inset 

shows just the individual trial used to collect clones for sequencing analysis to show the 

exact fold differences in total mutagenesis between the two strains. 

Low UV dose, 20 J/m
2
- At this dose, there was a significantly higher frequency of 

transition mutations in rev3∆C than in WT (Figure 5.4A). When mutations were further 

divided into the six major classes of base substitutions, plus deletions and insertions, both 

classes of transitions were significantly increased in rev3∆C (Figure 5.4A). rev3∆C also 

had significantly lower frequencies of two types of tranversions: GC to TA and TA to 

GC. Mutations are shown mapped to CAN1 in Appendix C, Figure C.1. 

Intermediate dose, 40 J/m
2
- At this dose, there was no difference in the frequency 

of transitions between WT and rev3∆C, but rev3∆C displayed a lower frequency of 

transversions and frameshifts (Figure 5.4B). This decrease in transversion mutations was 

found to be due to significant decreases in all substitution classes except TA to GC. The 

decrease in frameshift mutations was due to a decrease in deletions; there was no 

difference for insertions (Figure 5.4B). Mutations are shown mapped to CAN1 in 

Appendix C, Figure C.2. 

High dose, 60 J/m
2
- At the highest dose of 60 J/m

2
, the rev3∆C spectrum 

exhibited lower frequencies of all types of mutations compared to WT (Figure 5.4C). 
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Figure 5.2 Scheme of experiments to determine mutational spectra 

This procedure is described in section 2.7. 
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Figure 5.3 Mutagenesis levels in WT and rev3∆C strains used for mutational spectra 

analysis 

 

Average mutagenesis levels including all trials from Chapter 3 and the trial used for 

mutational spectra. These averages were used for all subsequent statistical analysis. 8C 

WT (blue ●), rev3ΔC (red ■). Inset: Mutagenesis levels in WT and rev3ΔC strains in the 

individual trial used to collect clones for sequencing. Data was collected and analyzed as 

described in Methods section 2.3 (four independent trials). All strains are described in 

Table 2.1.  
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Figure 5.4 rev3∆C has an altered mutational spectrum compared to WT, especially 

at an intermediate UV dose of 40 J/m
2
 

 

A. At 20 J/m
2
, rev3∆C spectra showed more transitions than WT but a deficiency in 

making three of the four types of transversions. B. At 40 J/m
2
, rev3∆C showed 

significantly fewer transversions (due to decreases in almost all classes) and frameshifts 

(due to deletions). C. At 60 J/m
2
, rev3∆C was highly deficient in all types of mutations 

compared to WT. All means are averages of four independent trials, Paired Student’s t-

test, *p < 0.05, **p < 0.01. 
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There were decreased frequencies of deletions, insertions, and all six classes of base 

substitutions (Figure 5.4C). At this high dose, almost exclusively CG to TA transition 

mutations were detected in rev3∆C. Mutations are shown mapped to CAN1 in Appendix 

C, Figure C.3. 

5.2.2 Rev3∆C creates Pol ζ specific complex mutations, albeit at a lower frequency 

than WT Rev3 

 

Nearly all UV-induced mutations are dependent on Pol ζ, and its mutational 

signature has been studied in vitro. One of the signatures of Pol ζ is the formation of 

complex mutations. These are defined here as multiple mutations in the same clone 

within ten base pairs. We found that Rev3∆C is capable of making complex mutations, 

but at a lower frequency than WT for all doses studied (Figure 5.5A). 

Complex mutations can be broken down into two categories: those that occur in 

adjacent base pairs (tandem complex mutations) and those that have unchanged bases 

between the mutations (non-tandem complex mutations). It appears that rev3∆C spectra 

exhibit a higher proportion of tandem complex mutations than WT, but this difference is 

only statistically significant at 60 J/m
2
 (Fisher’s exact test, p = 0.0182) (Figure 5.5B).  

5.2.3 The majority of mutations in WT and rev3∆C strains occur in dipyrimidine 

(DP) sites  

 

It is known that UVR induces primarily CPDs and 6-4PPs, both of which occur at 

dipyrimidine (DP) sequences (TT, CT, TC, CC; discussed in introduction). 

Correspondingly, the majority of mutations induced by UVR occur in these DP sites. The 

percentage of mutations found in DPs versus non-DPs was compared between WT and 

rev3∆C strains, excluding complex mutations from the analysis. In both strains, the  
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Figure 5.5 rev3∆C creates complex mutations at a lower frequency than WT 

A. All means are averages of four independent trials, Paired Student’s t-test, *p < 0.05, 

**p < 0.01. B. Only percentages at 60 J/m
2
 were statistical significance at p = 0.05, two 

sample t-test for proportions (Z-test) and Fisher’s Exact test. 

  



90 

 

majority of mutations occurred in DP sites and there was no statistical difference between 

the two strains (Table 5.1).  

Then the proportion of total DP sites that were mutated was determined by taking 

the number of mutations at DP sites in each strain divided by the total number of DP sites 

in the CAN1 gene. The transcribed and non-transcribed DNA strands were analyzed 

separately. In both strains, a statistically higher proportion of DP sites present in the non-

transcribed strand were mutated compared to the transcribed strand at two doses (low and 

high for WT, intermediate and high for rev3∆C) (Table 5.2). There was no significant 

difference in the proportion of sites mutated between the two strains. 

5.2.4 At the highest UV dose, the rev3∆C strain shows increased mutagenesis at 

CC sites compared to WT 

 

For each strain, the different types of DPs (CC, TT, TC, CT) were also analyzed 

(strands not analyzed separately). First, the percentage of total mutations that were 

detected at each site was examined. The number of mutations found at each type of DP 

site were divided by the total number of mutations in the respective spectra. The rev3∆C 

spectrum at 60 J/m
2
 showed an increase in the proportion of mutations found at CC sites 

and a decrease in non-pyrimidine sites compared to WT (Figure 5.6A).  

 Then the percentage of total DP sites of each type that were mutated was 

examined. The number of mutations detected of each DP type were divided by the total 

number of sites of that type present in the CAN1 gene. Mutations that were found in 

overlapping sites (example: CTC), where it could not be determined which dimer the 

affected base was involved in, were analyzed separately (data not shown). rev3∆C 

showed a significant decrease in the proportion of TT sites mutated and an increase in the  
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Table 5.1 Percentage of mutations occurring in dipyrimidine (DP) sites 

 

UVR Dose WT rev3ΔC 

 20 J/m
2 

91.4 95.2 

 40 J/m
2 

83.7 88.9 

 60 J/m
2 

85.4 95.6 

                 *complex mutations excluded 

 

 

Table 5.2: Percent of PD sites mutated in the transcribed and non-transcribed 

strands 

 

 WT  rev3∆C  

     

 NTS TS p value NTS TS p value 

20 J/m
2
 6.5 3.1 0.016 5.6 4.1 0.280 

40 J/m
2
 5.8 3.8 0.168 7.3 2.9 0.003 

60 J/m
2
 8.1 2.9 0.001 7.3 4.1 0.035 

*p values are Z test, NTS – non-transcribed strand, TS – transcribed strand 
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Figure 5.6 Mutations in different classes of DP sites mutated differ according to 

strain and UVR dose 

  

A. Percent of total mutations found at each type of DP site. Percent = mutations found 

at each DP type/total number of mutations found in spectrum. The rev3∆C spectrum at 60 

J/m
2
 showed a higher proportion of mutations in CC sites and a lower proportion in NP 

sites compared to WT. Within rev3∆C, there was a higher proportion of mutations in CT 

and CC sites at 60 J/m
2 
compared to 20 J/m

2
. B. Percent of total sites of each DP type 

mutated. Percent = mutations found in each DP type/total number of sites of that DP 

type present in the CAN1 gene. rev3∆C shows a decreased proportion of total TT sites 

and increased proportion of total CC sites mutated compared to WT. Within rev3∆C, a 

higher proportion of CT and CC sites were mutated at 60 J/m
2
 compared to lower doses. 

Key. Black lines/asterisks - comparison of strains, Orange lines/asterisks - comparison of 

doses. Open bars - WT data, hashed bars - rev3∆C data. Pink bars - 20 J/m
2
, green bars - 

40 J/m
2
, blue bars - 60 J/m

2
. OVL – overlapping DP sites (ex CTC), NP – non-pyrimidine 

sites, NI – non-identified DP sites. Z-test, * p < 0.05, **p < 0.01. 
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proportion of CC sites mutated at 60 J/m
2
 compared to WT (Figure 5.6B). A table  

showing the number of each type of DP site present in CAN1 is shown in Appendix D. 

5.2.5 Different doses of UV irradiation alter the mutational spectra in the rev3∆C 

strain  

 

The proportions of mutations in different classes (transitions, etc.) and different  

types of DP sites (TT, etc.) were compared within each strain between the three UV 

doses used.  

WT - There was no significant difference between the proportion of any class of 

mutation at 20, 40, or 60 J/m
2 
(Figure 5.7). There was no significant difference in the 

percentage of mutations that occurred at DP sites versus non-DP sites between doses 

(complex mutations alone or all mutations (complex included or excluded); data not 

shown). There were also no significant differences in the proportion of total mutations 

that were found in each specific type of DP site (Figure 5.6A) or the proportion of total 

DP sites of any type that were mutated between the three doses (Figure 5.6B). 

rev3∆C - The rev3∆C strain showed a significantly higher percentage of transition 

mutations at the highest dose (60 J/m
2
) compared to the lowest dose (20 J/m

2
) (Figure 

5.8). The increase seen in transitions was due to a significant increase specifically in CG 

to TA transitions (Figure 5.8). There was a decrease in the percentage of TA to CG 

transitions. There was also a significant decrease in the percentage of TA to AT 

transversions at the 60 J/m
2
 dose compared to 20 J/m

2
.  

There was no significant difference in the percentage of mutations that occurred at 

DP sites versus non-DP sites between doses (complex mutations alone or all mutations  
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Figure 5.7 Increasing doses of UV irradiation do not alter the CAN1 mutational 

spectra in WT yeast cells 

 

Z test and Fisher’s Exact test, *p < 0.05, **p < 0.01. 
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Figure 5.8 Increasing doses of UV irradiation increase the proportion of transitions 

in rev3∆C 

 

Z test and Fisher’s Exact test, *p < 0.05, **p < 0.01. 
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(complex included or excluded); data not shown), as seen in WT strains. When the 

specific types of DP sites were compared in rev3∆C, there was a significant increase in 

the proportion of total mutations that occurred in CT and CC sites at 60 J/m
2 

(Figure 

5.6A). Also, a significantly higher proportion of the total CT and CC sites were mutated 

at 60 J/m
2
 compared to the lower doses (Figure 5.6B). 

5.3 Discussion 

In this chapter, we asked if the Pol ζ variant present in the rev3∆C mutant strain is 

deficient at participating in all types of mutations, or only certain types in response to 

UVR. Comparing UV-induced mutational spectra between WT and rev3∆C strains can 

further define the regulatory role of the CTD of Rev3 during TLS. We found that rev3∆C 

shows a strong bias toward making transitions. There is a milder defect with respect to 

transitions than transversions/frameshifts, and a higher UV dose is needed to elicit this 

effect. The CTD of Rev3 may normally be involved directly or indirectly in making 

certain types of mutations (depending on if the CTD modulates the active site of the 

catalytic polypeptide) or it may allow Pol ζ to be recruited more efficiently to some types 

of lesions. 

5.3.1 Altered mutational spectra in rev3∆C compared to WT strains at all doses 

Spectra were examined at three different doses to accurately reflect the fact that 

the severity of the mutagenesis defect of rev3∆C strains is dose dependent. At the lowest 

dose used, 20 J/m
2
, rev3∆C showed an increase in both classes of transitions (CG to TA 

and TA to CG) and a decrease in two classes of transversions (GC to TA and TA to GC) 

compared to WT (Figure 5.4). As a result of these two opposing trends, there was no 
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difference in the overall mutation frequency between rev3∆C and WT strains at this dose 

(Figure 5.3).  

At the intermediate dose of 40 J/m
2
, rev3∆C strains showed about a 50% 

reduction in total induced mutant frequency (Figure 5.3). This dose was the most 

discriminatory between the two strains in terms of mutational spectra. The rev3∆C 

spectrum displayed significantly lower frequencies of all classes of transversions except 

TA to GC, and had a lower frequency of deletions (Figure 5.4).  

At the highest dose, 60 J/m
2
, rev3∆C exhibited a six fold reduction in overall 

induced mutant frequency and was significantly impaired in making/extending from all 

types of mutations compared to WT (Figures 5.3, 5.4). The defect in transitions was 

much less severe, and was only apparent at this dose. In fact, 71% of mutations seen in 

rev3∆C at this dose were CG to TA transitions.  

5.3.2 The transition bias of Rev3∆C 

If the spectra between WT and rev3∆C did not differ, it would suggest a general 

defect in induced mutagenesis, such as a simply less active Pol ζ or a general recruitment 

defect. However, the differing spectra suggest that the CTD of Rev3 is involved in 

regulation of TLS in a more specific manner. The decrease seen in overall induced 

mutant frequencies in rev3∆C strains could be due to the fact that lesions or sequence 

contexts where transversions usually arise may not be efficiently bypassed by Rev3∆C. 

Perhaps Rev3∆C has more difficulty inserting bases resulting in transversions compared 

WT and/or Rev3∆C may be less efficient at extending transversions inserted by other 

polymerases such as Pol η. Rev3∆C may be recruited less efficiently to lesions where 

transversions usually arise.  
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Structurally speaking, it is reasonable that Rev3∆C should have less difficulty 

with transitions because these involve substitution of a two-ring base for a two-ring base, 

or a one ringed base for a one ringed base. These should be easier to form than 

transversions which substitute a two-ring structure for a one-ring structure or vice versa. 

The latter would be more distorting to the double helix of DNA, posing difficulty for both 

insertion and extension. It is formally possible that Rev3∆C is an inferior enzyme, so 

only the simplest mutations to make/extend remain (transitions). 

Another possibility is that Rev3∆C is more proficient at bypassing one of the two 

major types of UV lesions (discussed in 5.3.4). It will be very important in the future to 

determine whether the regulatory role of the CTD is in recruitment to DNA or whether it 

actually affects catalysis. Without a solved structure showing Rev3 with the CTD in the 

Pol ζ complex, it is not known where the domain lies in relation to the catalytic residues 

or DNA binding site. Deamination of Cs in 6-4PPs could also be playing a role in this 

process. If it takes more time for mutations to be addressed by Rev3∆C, this could allow 

time for involved C residues to be deaminated to U, resulting in an A incorporation.  

5.3.3 Rev3∆C forms complex mutations at a lower frequency than WT 

One of the signatures of Pol ζ is the formation of complex mutations, which are 

not seen in rev3∆ strains [63]. These can occur by a template switching mechanism, or 

when Pol ζ makes errors/mutations during extension of sequences downstream of the 

lesion site. They are defined here as multiple mutations in the same clone within ten base 

pairs, although it has been shown recently that stretches synthesized by Pol ζ can be 

much longer, up to several hundred nucleotides [38]. In our strains, Rev3∆C was able to 

participate in formation of these complex mutations, both tandem and non-tandem, but at 
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a lower overall frequency than WT (Figure 5.5). It is most likely that Rev3∆C is equally 

as proficient at participating in the formation of complex mutations as WT and a lower 

frequency of them just reflects the lower total induced frequency. This is supported by 

the fact that the proportion of complex mutations in the strains is not significantly 

different, even though the total frequencies are.  

Sequences of some clones examined in this study had distant mutations separated 

by 20-1500 bp. These distant mutations were detected in 7 WT and 5 rev3∆C clones 

total, occurring at all three doses. The distance ranges were similar for both strains: 20-

1498 bp for WT and 15-1151 bp for rev3∆C. This could mean that Rev3∆C can 

potentially synthesize long stretches of DNA. However this cannot be determined 

definitively because these events are rare, and at present it is not possible to tell whether 

these mutations were independent events of long patches or error-prone synthesis after 

the initial extension.  

5.3.4 Comparing spectra at low, intermediate, and high doses of UVR 

The differential effects of the rev3∆C mutation at different doses indicate that the 

mechanisms of TLS might be somewhat different at low and high doses of mutagen 

exposure. Indeed, it has been shown using bioinformatic approaches that NER proteins, 

responsible for repair of most UVR-induced lesions, form dose specific 

interactions/networks in response to different doses of UVR [156]. Another study showed 

that there was a reversal in the relative sensitivities of yeast cells lacking Pol η or Pol ζ at 

40 J/m
2
 [147]. Cells lacking Pol ζ were more sensitive at low doses, whereas cells lacking 

Pol η were more sensitive at higher doses. This role for Pol η in survival at higher doses 

may reflect the fact that its transcription is induced in response to UVR. There may be a 
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greater dependence on Pol ζ for tolerating lesions produced by low UV doses. Cells 

lacking both TLS polymerases had similar mutagenesis levels to rev3∆ alone up to 40 

J/m
2
, then at higher doses the double mutant was more sensitive than either single mutant. 

This suggests that Pols η and ζ may act together to bypass some UV lesions at lower 

doses, but in addition Pol ζ can promote UV survival independent of Pol η at higher 

doses.  

This could imply that Rev3∆C specifically has difficulty efficiently bypassing 

lesions by itself or with Pol δ (highest dose), but can efficiently take over synthesis from 

Pol η (lower doses). These data, together with our observations, support the fact that 

different UVR doses may trigger slightly different repair/tolerance mechanisms in 

addition to just inducing different levels of DNA damage. It is interesting to note that the 

dose where we saw the most bias in our spectra is the same dose at which Pol η and ζ 

contributions seem to shift (40 J/m
2
). This dose may represent a certain threshold in cells. 

Not all aspects differed depending on the UVR doses used. We compared the 

effects of the three doses used within each strain, and found that there were no significant 

differences in any analyses between the WT spectra obtained at each dose (Figure 5.6, 

Figure 5.7). However, there were some differences in the 60 J/m
2
 spectra of rev3∆C 

compared to the lower doses. Transitions were higher in rev3∆C at the highest dose 

compared to the other two; this was due to an increase in CG to TA (Figure 5.8). It 

appears that Rev3∆C is deficient in making/extending transversions at high doses, so it 

compensates through transitions instead.  

Most mutations in both strains were found in DP sites, consistent with the fact 

that most lesions are CPDs or 6-4PPs. It has been shown that CPDs and 6-4PPs are 
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repaired by separate enzymes [147, 157, 158]. To date, only CPD photolyase has been 

identified in yeast. Photoreactivation was neither specifically induced nor controlled in 

our experiments, so it is not clear to what extent CPDs were repaired by this mechanism. 

6-4PPs are usually formed preferentially at CC and CT dimers, whereas CPDs are formed 

at TT [153]. In the data presented here, a higher proportion of total mutations were found 

in CC sites and a higher proportion of total CC and lower proportion of total TT sites 

were mutated in rev3∆C at 60 J/m
2
 compared to WT (Figure 5.6). Additionally, there was 

an increase in the proportion of mutations found at CC and CT sites and the proportion of 

total CC/CT sites mutated at 60 J/m
2
 in rev3∆C compared to lower doses. These data may 

reflect a stronger role for Rev3∆C in the bypass of 6-4PPs (and deficiency in CPD 

bypass), especially high doses of UVR. 

5.3.5 Comparing spectra determined in this study to earlier studies 

Mutation spectra presented here for both strains share many features with CAN1 

spectra reported in the literature. Studies showed that 5-20% of UV induced mutations 

are frameshifts (discussed in [147]), here the range was 12-17%. The majority of 

mutations described previously and in our study were base pair substitutions and complex 

mutations that increase with dose. The spectra were dominated by AT to TA 

transversions, most mutations were in DP sites, and deletions were more frequent than 

insertions. As in many spectra, both strains used here showed a higher proportion of 

mutated sites in the non-transcribed strand than the transcribed strand at multiple doses 

(Table 5.2). This can be due to differential repair, for example TC-NER increases repair 

efficiency on the transcribed strand so less mutations may arise on this strand. 
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Several, though not all, features of these spectra are also consistent with those 

observed in p53 in human skin cancers. Both spectra (skin tumors and spectra in this 

study) display a high proportion of CG to TA mutations, but yeast strains used here also 

have a high proportion of TA to AT which are absent in human cancers. Most CG to TA 

mutations were C to T and most mutations were present in DPs (83-95% when complex 

mutations are excluded) depending on the dose. Many of these similarities can be 

attributed to the fact that the nature of the damage is the same, they also reinforce the 

relevance of UV spectra measurement and analysis in yeast. Our study also shows that 

lack of the CTD does not make spectra more dissimilar to human cancers. It is important 

to note several reasons why the differences seen are present: 1) different genes are being 

considered (p53 vs. CAN1), 2) photoreactivation in yeast is known to correct CPDs and 

experiments here did not control for photoreactivation, and 3) skin cancers were exposed 

to sunlight, a mixture of different wavelengths (see section 5.1), whereas experiments 

here were done with UVC.  

5.3.6 Conclusions 

We have shown in this chapter that mutational spectra produced by Pol ζ lacking 

the CTD (strains with the rev3∆C mutation) differ from those produced by WT. rev3∆C 

strains show the strongest defects in making/extending transversions and frameshift 

mutations, while they are very proficient at transitions at low and intermediate doses. 

Mutational spectra in rev3∆C strains, unlike WT, are altered by increased doses of UVR. 

Overall, data presented here highlight the fact that the function of the CTD in regulation 

of TLS may be very intricate, because the absence of CTD of Pol  alters specificity of 

TLS. 
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6 Conclusions, Discussion, and Future Directions 

6.1 Overall Conclusions and Discussion 

6.1.1 Functions of the CTD of Rev3 

From the genetic studies of rev3∆C presented here, several general functions of 

the CTD of Rev3 have been revealed. It was found that the CTD of Rev3 is required for 

efficient mutagenesis at intermediate to high doses of UVR (Figure 3.6). In the absence 

of the CTD, induced mutagenesis is drastically reduced at 60 J/m
2
 and the mutagenesis 

that remains is dependent on Pol ζ (Figures 3.6, 3.7). At this dose, all classes of mutations 

were produced at a lower frequency in rev3∆C (Figure 5.4). Despite this clear role of the 

CTD in regulating UV-induced mutagenesis, it appears not to play a role in the formation 

of spontaneous mutations by Pol ζ as there was no difference in spontaneous mutation 

rates between the strains (Table 4.1). Whether or not rev3∆C produces an altered 

spontaneous mutation spectra has yet to be determined.  

When examining UV-induced mutational spectra, it was found that most 

transversions and frameshifts were dependent on the CTD of Rev3 (Figure 5.4). These 

types of mutations were decreased at intermediate UV doses in rev3∆C and were nearly 

lost at the high dose. This suggests that regulation of Pol ζ by the CTD is fine-tuned, as 

opposed to regulating all or no properties/functions of the enzyme. The CTD is not 

required for the formation of Pol ζ signature complex mutations, as these are formed at 

all doses used (Figure 5.5).  

Several characteristics of Pol ζ were shown not to depend on the CTD. The CTD 

does not appear to alter the overall stability of Pol ζ. None of the CTD mutants were 
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preferentially degraded compared to WT (Figure 3.8). The CTD is not necessary for the 

TLS transactions dependent on Rev1 or Ub-PCNA, because these proteins are still 

required in rev3∆C strains (Figure 4.2).  

6.1.2 Speculation on specific roles of the CTD  

It is clear that the Pol ζ complex containing the Rev3∆C catalytic subunit 

(referred to as simply Rev3∆C) is a functional, yet inferior enzyme. This could be due to 

many reasons. The CTD may play a role in the level of activity of Pol ζ, through its 

binding to Pol31/Pol32 or through another unknown regulatory mechanism. Therefore, 

Rev3∆C could have lower activity than WT Pol ζ. Another possibility is that the CTD 

plays a role in recruitment, so in its absence Pol ζ is recruited by a novel mechanism that 

is less efficient. The mutational spectra analysis may suggest a more specific role of the 

CTD in the determination of what types of mutations are made. It could be that the CTD 

assists in bypass of some lesions, but not others. For example, it may be required for 

assisting in bypass of CPDs but not 6-4 PPs, due to the increase in mutated CT and CC 

sites in the rev3∆C strain.  

Although Pol ζ is required for almost all UV-induced mutations, it is important to 

keep in mind that Pol η plays a very important and active role in the bypass of UV-

induced DNA damage. It was suggested that at low doses of UVR, Pol η and Pol ζ can 

act together to bypass lesions and at higher doses Pol ζ can do it alone if Pol η is absent 

[147]. The CTD of Pol ζ may be more critical for the insertion of nucleotides across from 

lesions, and less so in extension past nucleotides inserted by another polymerase.  
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6.1.3 Rev3∆C could be recruited by a novel mechanism  

Data presented here raise the possibility that in the absence of the CTD, Pol ζ is 

recruited by an alternative mechanism. Rev3∆C lacks strong binding to Pol31/Pol32 

similar to Rev3FeS, but has a less severe phenotype (Figure 3.6). Neither can be recruited 

by the subunit sharing model of polymerase switching (Figure 4.1). It is not clear at this 

point whether Rev3-FeS is recruited at all.  

This potential novel mechanism used in strains with the rev3∆C mutation still 

requires Pol δ for the switch, as Pol32 is required for mutagenesis in this strain. The 

mechanism is also dependent on the monoubiquitylation of PCNA and the presence of 

Rev1 (Figure 4.2). It was hypothesized that this mechanism might be free of some of the 

regulation that acts on WT Pol ζ. Indeed, Rev3∆C escapes negative regulation by the 

ATPase Mgs1 (Figure 4.4). Mgs1 is thought to decrease induced mutagenesis by 

competing with Pol32 (of Pol ζ, Figure 4.7) at sites of TLS or by shuttling to different 

branches of the DNA damage tolerance pathway by an unknown mechanism. Regardless 

of the exact mechanism of negative regulation by Mgs1, Mgs1 does not regulate the 

Rev3∆C variant of Pol ζ, highlighting a role for the CTD related to Mgs1. Rev3∆C is not 

recruited too promiscuously to DNA, as there was no effect on the spontaneous mutation 

rate in rev3∆C (Table 4.1). As mentioned, this new mechanism utilized by Rev3∆C is 

regulated, though maybe not as harshly as the canonical pathway of WT Pol ζ.  

6.1.4 Conclusions about the phenotypes of the rev3∆C mutation  

All mutagenesis in rev3∆C strains was dependent on the catalytic activity of Pol 

ζ; therefore this Rev3∆C variant is active and recruited to sites of DNA damage (Figure 

3.7). The relative extent of activity and recruitment in vivo are difficult to estimate. 
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Despite the negative effect of CTD mutations on induced mutagenesis, none of the CTD 

mutants studied actively interfere with TLS or are dominant negative to WT Pol ζ (Figure 

3.9). When the mutant alleles were grossly overexpressed in the presence of endogenous 

levels of WT Pol ζ, mutagenesis was present at WT levels. If they negatively impacted 

any proteins necessary for TLS, some decreased mutagenesis would be expected due to 

the sheer excess of the mutants over WT in these strains. Additionally, there was no 

difference in mutagenesis with endogenous levels of rev3∆C vs. overexpression of 

rev3∆C (Figure 3.8). If it was playing a dominant negative role, overexpression would 

have decreased mutagenesis even more. The decreased mutagenesis does not seem to be 

related to a problem with availability of Rev3∆C, since its overproduction had no effect 

and there was no effect on spontaneous mutagenesis. 

6.1.5 Broader Conclusions  

The work detailed here allows for some conclusions affecting the DNA 

polymerase and TLS fields, outside of just delineating functions of the CTD. Studies of 

rev3∆C revealed two broader implications, discussed in Chapter 4. The phenotype of 

rev3∆C shows that Pol ζ activity is not dependent on Pol31/Pol32, though they may 

affect efficiency. The dependence of Rev3∆C on Pol32, despite only a possible weak 

interaction with Pol32 through Rev1, highlights the importance of Pol δ in TLS (Figure 

4.2). This role could be in insertion across some types of lesions such as abasic sites, 

mutation fixation, post-replicative gap filling, or in the regulation of the polymerase 

switch itself. 

The fact that overexpression of Mgs1 eliminates mutagenesis in WT strains, but 

not rev3∆C, suggests a novel role for Mgs1 as a direct inhibitor of DNA Pol ζ (Figure 
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4.5). This also argues against the fact that it inhibits Pol δ in TLS, although certainly 

other studies have shown well that Mgs1 does exhibit several other regulatory effects on 

Pol δ. This inhibition of Pol ζ suggests another mechanism by which Mgs1 can suppress 

mutagenic effects of DNA damage tolerance.   

6.2 Future Directions Chapter 3 

6.2.1 Redox reactivity of polymerase FeS clusters  

The FeS cluster present in the CTD of Rev3 has been shown to be required for 

binding to Pol31, and disruption of this cluster eliminates UV-induced mutagenesis in 

yeast [78, 81]. This demonstrates that the FeS cluster is important for mutagenesis, 

though it is not essential because strains lacking the CTD still exhibit mutagenesis 

(Figure 3.6). One function of this cluster appears to be a structural role in binding to 

Pol31/Pol32, and this may play a role in polymerase switches if they occur by subunit 

sharing (Figure 4.1). We hypothesize that a change in the oxidative state of the cluster 

may trigger dissociation of the catalytic subunits [67]. To test this, aliquots of each 

purified polymerase could be oxidized and reduced in vitro, and binding of Pol3/Rev3 to 

Pol31/Pol32 could be assessed using native gel electrophoresis or pull-down followed by 

western blot analysis. This would determine whether redox regulation of the FeS can 

contribute to subunit switching. 

6.2.2 EPR characterization of FeS clusters in human polymerases 

There are several types of FeS clusters (Figure 3.4). It has been found using electron 

paramagnetic resonance (EPR) that yeast B-family polymerases contain [4Fe-4S] type 

clusters [87]. However, the human enzymes have not been examined as thoroughly, 
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which is very important for the validity of the yeast model. In preliminary experiments, 

we purified a complex of the CTD of human p125 (Pol3) with p50/p66 (Pol31/Pol32 in 

yeast). We confirmed a [4Fe-4S] type cluster using UV-visible spectroscopy and 

elemental analysis with Inductively Coupled Plasma Mass Spectrometry (ICP-MS); four 

Fe molecules per complex were present. The same analysis could be performed on the 

CTD of human Pol ζ and electron paramagnetic resonance (EPR) experiments would 

confirm biophysically that it behaves like a [4Fe-4S] cluster. EPR would also allow 

measurement of the redox potential of this cluster to determine if the conditions needed to 

oxidize/reduce the clusters match conditions present physiologically in cells.  

6.2.3 Finding an explanation for the differing phenotypes of rev3∆C and rev3FeS 

The entire CTD, containing the FeS cluster, has a milder effect on UV-induced 

mutagenesis than the mutant with a disrupted FeS cluster. Delineating this difference will 

shed light on the functions of the CTD as a whole and the function of the FeS cluster. It 

also could reveal a novel recruitment mechanism only seen in the absence of the cluster. 

The differences in phenotype could be due to the activity levels of the polymerases 

encoded by rev3∆C and rev3-FeS. To examine this, it would be of interest to purify these 

variants of Pol ζ from yeast. Western blot analysis could be used to confirm whether or 

not these variants can bind Pol32 through the weak, minor interaction with Rev7 that has 

been recently proposed. Then the activity of these proteins in in vitro primer extension 

assays on damaged and undamaged templates could be examined. In these assays, a 

labeled primer with a molecular bumper to prevent random sliding of PCNA is annealed 

to a template (with or without DNA adducts) and incubated with a polymerase and 

accessory factors. The products analyzed on a DNA sequencing gel will provide 
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information on how many nucleotides the polymerase variants added to the labeled 

primer on a normal or damaged template. The role of accessory factors could also be 

investigated.  

The severity of the rev3-FeS phenotype may be due to a lack of recruitment to DNA. 

This could be assessed in yeast using ChIP assays to see if rev3-FeS is present on the 

DNA. This will be compared to rev3∆C, which we know is recruited but to an unknown 

extent. Pol ζ is present at low levels in cells, so both variants would need to be 

overexpressed. If this approach would be unsuccessful, an alternative method could be to 

attempt pulldown of Rev3 variants with PCNA and probe for Pol ζ using western blot 

analysis. This approach would be informative because TLS polymerases are thought bind 

PCNA when it is present on DNA. 

6.2.4 Studying the phenotypes of rev3∆C with other mutagens 

The intermediate trend of mutagenesis in rev3∆C could be confirmed using other 

mutagens, such as MMS, to see whether its effect is UVR specific. Furthermore, it is 

known that absence of Pol ζ can lead to formation of chromosomal rearrangements [54], 

which could be in part be due to its role in the repair of DSBs caused by ICLs. 

Mutagenesis in rev3∆C strains capable of detecting chromosomal rearrangements in 

response to agents that cause ICLs, such as cisplatin or mitomycin C, could be measured 

to determine if this mutant could represent a “happy medium”: proficient at ICL bypass 

to help prevent chromosomal rearrangements while making fewer point mutations.  
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6.3 Future directions Chapter 4 

6.3.1 The subunit sharing DNA polymerase switch model 

A key step in the subunit sharing model of polymerase switching (from Pol δ to 

Pol ζ) during TLS is Pol31/Pol32 remaining on the DNA/PCNA once Pol3 has 

dissociated (Figure 4.1). To test this model, fluorescence resonance energy transfer 

(FRET) could be utilized (Figure 6.1). In this system, a donor fluorophore (e.g. Cy3) on 

one molecule is excited and emits a wavelength that excites an acceptor fluorophore 

(Cy5) on a second molecule (that is in very close proximity) (Figure 6.1A). Typically 

Cy3 emission is seen when the two partner molecules are unbound, and Cy5 emission is 

seen when they are bound.  

The situation with Pol δ would be more complicated because FeS clusters like the 

one present in Pol3 are strong quenchers of fluorescence. In a hypothetical future 

experiment, Cy3 could be attached to a DNA template downstream from a damaged site 

and Cy5 could be attached to Pol31. Then DNA synthesis reactions would be monitored 

by FRET at the single molecule level. If the model is correct, a spectra resembling Figure 

6.1B could be expected. When Pol δ is not bound to DNA, only Cy3 fluorescence could 

be seen (Figure 6.1C). When Pol δ binds DNA, the FeS cluster of Pol3 could be close 

enough to quench Cy3 and there would be no signal (Figure 6.1D). Finally, if only 

Pol31/Pol32 remain bound to DNA, Cy3 could excite Cy5 and only Cy5 emission would 

be seen (Figure 6.1E). This is only a general scheme, more fine details would need to be 

worked out before performing this complicated analysis. For example, one limitation 

could be that if Pol ζ is needed to displace the catalytic subunit of Pol δ, Pol ζ would also 

quench the signal. 



111 

 

 
 

 

Figure 6.1 Scheme to test subunit sharing model of polymerase switch using FRET 

Key: “3” indicates either Pol3 or Rev3, “31” indicates Pol31, and “32” indicates Pol32. 

A. Theory behind FRET. The light source activates a donor chromophore, which emits a 

wavelength that can activate an acceptor if they are in close proximity (such as two 

bound proteins). B. Theoretical FRET curves over time if Pol3/Rev3 can leave the DNA 

without Pol31/Pol32. C-D. Breakdown of each type of FRET signal in this experiment. 
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6.3.2 Direct inhibition of Pol ζ synthesis by Mgs1 

Overexpression of Mgs1 in yeast inhibited induced mutagenesis only in strains 

with WT Pol ζ (Figure 4.5). To further investigate this inhibition, Mgs1 could be purified 

and it effect will be studied using primer extension assays in vitro. Reaction components 

could include Ub-PCNA, polymerase (Pol δ, Pol ζ WT, or Pol ζ Rev3∆C), dNTPs, 

primed DNA template, and Mgs1. First all components could be added to the reaction 

simultaneously to see if Mgs1 will have an effect on primer elongation by the 

polymerase. Then in separate samples, Mgs1 could be pre-incubated with the other 

components prior to addition of the polymerase. We hypothesize that Pol δ activity would 

be unaffected or very slightly affected, but primer extension by WT Pol ζ would be 

inhibited because Mgs1 can outcompete Pol32 of Pol ζ for binding to Ub-PCNA. This 

would support our previous hypothesis that Mgs1 can only compete with Pol32 bound to 

Pol ζ and not Pol δ. We would expect to see no effect on Rev3∆C, because it lacks a 

strong interaction with Pol31/Pol32 and there was no effect of MGS1 overexpression in 

vivo. 

6.3.3 Cellular context for Mgs1 inhibition of Pol ζ 

It is unknown under what in vivo conditions this negative regulatory effect of 

Mgs1 on Pol ζ/TLS occurs. It has been shown that deletion of Mgs1 elevates spontaneous 

reversion mutations, while having no effect on induced mutagenesis [110]. Therefore 

Mgs1 may inhibit dangerous TLS in the absence of damage. We were unable to confirm 

this result using forward mutations in CAN1, so spontaneous mutagenesis rates in mgs1∆ 

mutant strains could be measured using the ade2-1 nonsense reporter analogous to the 

reporter used in [105], which allow for detection of a small subset of mutations.  
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Furthermore, TLS is thought to occur by two non-mutually exclusive models. In one 

model, TLS occurs at the fork during S-phase and in the other it helps fill post-replicative 

gaps during the G2 phase. To determine if Mgs1 could play a larger role during one of 

these types of TLS, mRNA expression levels could be measured throughout the cell cycle 

in synchronized yeast cultures.  

6.4 Future Directions Chapter 5 

6.4.1 Effect of photoreactivation on mutagenesis in WT and rev3∆C strains 

UV light primarily induces CPDs and 6-4PPs. Differences in the roles of Pol η 

and Pol ζ were seen when yeast plates were incubated in the presence or absence of light 

[147], because CPDs are more readily corrected by photoreactivation than are 6-4PPs. 

The spectra presented here were collected from mutants grown uncovered, but in a 

somewhat shaded incubator. It appeared that rev3∆C showed higher proportions of 

mutations at CC and CT sites as the dose was increased, which could indicate a more 

prominent role of 6-4PPs in mutagenesis in this strain. To compare the effect of these two 

separate types of damage between strains and between doses, additional spectra could be 

obtained with plates grown in the presence or absence of photoreactivation. Also, WT 

and rev3∆C strains could be transformed with plasmids containing a CPD or a 6-4PP and 

then examined for bypass as was done in [148]. Substrates would be gapped double 

stranded plasmids designed as in [148]. 

6.4.2 Spontaneous mutational spectra in rev3∆C during DRIM  

Strains with rev3∆C showed altered mutational spectra in response to UV 

damage, even at 20 J/m
2
 where the total induced mutant frequency was equivalent to WT 
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(Figure 5.4). Therefore, spontaneous mutation spectra could be collected and analyzed to 

compare WT and rev3∆C. This will help determine if the partial rev3∆C deficiency is 

occurring only when recruited to damage sites, or also during replication stalling without 

damage such as during defective replisome induced mutagenesis (DRIM) [48]. The latter 

condition would be provoked by the addition of hydroxyurea (HU) or the use of 

replicative DNA polymerase mutants. 

6.4.3 Ability of rev3∆C to prevent chromosome rearrangements in mammalian 

cells 

 

Eventually, this work should be continued in mammalian cells. It was shown in 

MEFs that the deletion of REV3L results in elevation of gross chromosomal 

rearrangements [54]. rev3∆C yeast strains produce some types of mutations proficiently 

(transitions), but not others, and has a lower total frequency of induced mutagenesis than 

WT. Therefore, we want to investigate if a human variant of Rev3∆C can accomplish 

bypass preventing chromosomal instability, while being more deficient at detrimental 

bypass such as the formation of point mutations. To test this, mouse REV3L∆C would be 

expressed from a vector in Pol ζ-deficient MEFs and mutation frequency would be 

measured to see if it was decreased. Chromosome spreads would be examined to look at 

ploidy, translocations, double minutes, and other chromosomal anomalies.  
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8 Appendices 

8.1 Appendix A: Abbreviations  

6-4PP – 6-4 photoproduct 

8-oxoG – 8-oxoguanine 

AAF – N-2-acetyl-2-aminoflurene 

AP site – apurinic/apyrimidinic site  

BER – base excision repair 

bp – base pairs 

Can - canavanine 

CPD – cyclobutane pyrimidine dimer 

CTD - C-terminal domain 

DDR – DNA damage response 

DNA – deoxyribonucleic acid 

DP - dipyrimidine 

DRIM – defective replisome-induced mutagenesis 

DSB – double strand break 

FRET – fluorescence resonance energy transfer 

GG-NER – global genome nucleotide excision repair 

HR – homologous recombination 

HU - hydroxyurea 

ICL – interstrand crosslink 
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MBS1/MBS2 – metal binding site 1/2  

MEFs – mouse embryonic fibroblasts 

Mgs1 – maintenance of genome stability 1 

MMR – mismatch repair 

MMS – methyl methanesulfonate 

NER – nucleotide excision repair 

NHEJ – non-homologous end joining 

NTS – non-transcribed strand 

ORF – open reading frame 

PAD – polymerase associated domain 

PCNA – proliferating cell nuclear antigen 

PCR – polymerase chain reaction 

PRR – post-replicative repair 

RFC – replication factor C 

RNA – ribonucleic acid 

ROS – reactive oxygen species 

RPA – replication protein A 

SC – synthetic complete 

SGD – saccharomyces genome database 

SSB – single strand break 

TC-NER – transcription coupled nucleotide excision repair 

TLS – translesion DNA synthesis 

TS – transcribed strand 
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UVR – ultraviolet radiation 

WNRIP1 – Werner interacting protein 1 

WT – wild type 

XP – xeroderma pigmentosum 

XPV – xeroderma pigmentosum Variant 

ZnF – zinc finger 

8.2 Appendix B: Primer Sequences 

Table B1: Primer sequences 

Primer Set Function Sequence (5’-3’) 

CAN1extF2 

CAN1extR2 

PCR amplification 

of CAN1 gene for 

spectra 

F2 - TCTTCAGACTTCTTAACTCC 

R2 - ATAGTAAGCTCATTGATCCC 

CAN1seq520F 

CAN1seq699R 

CAN1seq2094R 

CAN1 sequencing 

primers for spectra 

520F – TGGTTTTCTTGGGCAATCAC 

699R - GATGGAAGCGACCCAGAAC 

2094R - CATTGATCCCTTAAACTTTCTTTTC 

Rev3DDmuta 

Rev3DDmutaRC 

Creation of rev3-dd 

mutant using SDM 

GAACGCCAAAGTTGTCTATGGAGCCA 

CAGCTAGTTTATTTGTATATC 

RC - Reverse complement of above 

Rev1/US-300-F 

Rev1/US-300-R 

Amplification of 

Rev1 deletion 

cassette 

F - CAAGACGGAAAAAAGTAGCT 

R - GGTGAGGATGTTCATAGGCG 

Pol32-ups-F 

Pol32-down-R 

Amplification of 

Pol32 deletion 

cassette 

F - GATGTCCTCGGATCGAAACC 

R - GTGGCGACAGTCATTGAA 

ZnF1SDF 

ZnF1SDR 

Creation of rev3-

ZnF mutant using 

SDM 

F – GAATTGACTAAAATATGTTCACTTCA 

GTTAGCTGATGACGCTTTAGAG 

R – GTGAACATATTTTAGTCAATTCTTCA 

CCAGCATTACAAGCTGTTG 

ZnF2-1SDF 

ZnF2-2SDF 

ZnF2-2SDR 

Creation of rev3-

FeS mutant using 

SDM 

F1 – TGGCCAGGACGGCCAGTTATCGTTA 

CACTTCCGATGCAG 

F2 – AGCCAATTCATATGACGCTCCAGTA 

TTTTACTCTCGTGTCAAAG 

R – GAGCGTCATATGAATTGGCTTTACTA 

GCTATATGGTCATTTTCGATG 

*GR – gap repair, SDM – site directed mutagenesis 
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8.3 Appendix C: Additional Data  

8.3.1 Figure C1 - Mutational spectra mapped to CAN1 gene for WT and rev3∆C 

strains 
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Figure C.1 Mutational Spectra of WT and rev3∆C at 20 J/m
2
 mapped to CAN1 gene 

 

Black continuous text represents the sequence of the CAN1 gene in budding yeast. Black 

text/bases above CAN1 represent mutations found in WT clones and blue text/bases 

below CAN1 indicate mutations found in rev3∆C clones. Red boxes encase WT complex 

mutations and green boxes encase rev3∆C complex mutations. Triangles represent 

deletions, if a number is present it indicates how many bases were deleted otherwise it 

was one base. Red bases in the CAN1 sequence are polymorphisms found in the 8C strain 

that differ from the reference strain deposited in the Saccharomyces Genome Database. 
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Figure C.2 Mutational Spectra of WT and rev3∆C at 40 J/m
2
 mapped to CAN1 gene 

Black continuous text represents the sequence of the CAN1 gene in budding yeast. Black 

text/bases above CAN1 represent mutations found in WT clones and blue text/bases 

below CAN1 indicate mutations found in rev3∆C clones. Red boxes encase WT complex 

mutations and green boxes encase rev3∆C complex mutations. Triangles represent 

deletions, if a number is present it indicates how many bases were deleted otherwise it 

was one base. Red bases in the CAN1 sequence are polymorphisms found in the 8C strain 

that differ from the reference strain deposited in the Saccharomyces Genome Database. 
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Figure C.3 Mutational Spectra of WT and rev3∆C at 60 J/m
2
 mapped to CAN1 gene 

Black continuous text represents the sequence of the CAN1 gene in budding yeast. Black 

text/bases above CAN1 represent mutations found in WT clones and blue text/bases 

below CAN1 indicate mutations found in rev3∆C clones. Red boxes encase WT complex 

mutations and green boxes encase rev3∆C complex mutations. Triangles represent 

deletions, if a number is present it indicates how many bases were deleted otherwise it 

was one base. Red bases in the CAN1 sequence are polymorphisms found in the 8C strain 

that differ from the reference strain deposited in the Saccharomyces Genome Database. 

 

 

8.4 Appendix D: Breakdown of DP Sites in CAN1 

Table D1: Number of sites of each DP site present on each strand in CAN1 

Type of DP # of sites in 

CAN1 

Total per 

strand 

TT 225  

NTS 

518 
TC 105 

CT 111 

CC 77 

AA 136  

TS 

418 
AG 92 

GA 87 

GG 103 

  *DP – dipyrimidine, NTS – non-transcribed strand 

    TS – transcribed strand 
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Table D2: Number of sites of each overlapping DP site present on each strand in 

CAN1 

Type of OVL 

DP 

# of sites in 

CAN1 

Total per 

strand 

TTC 38  

 

NTS 

186 

CTT 50 

CCT 26 

TCT 35 

TCC 20 

CTC 17 

AAG 29  

 

TS 

157 

GAA 37 

GGA 19 

AGA 31 

AGG 21 

GAG 20 

  *OVL – overlapping, DP – dipyrimidine 

  NTS – non-transcribed strand, TS – transcribed strand 
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