4,092 research outputs found

    Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity

    Get PDF
    We investigate a delay differential equation that models a pendulum stabilized in the upright position by a delayed linear horizontal control force. Linear stability analysis reveals that the region of stability of the origin (the upright position of the pendulum) is bounded for positive delay. We find that a codimension-three triple-zero eigenvalue bifurcation acts as an organizing centre of the dynamics. It is studied by computing and then analysing a reduced three-dimensional vector field on the centre manifold. The validity of this analysis is checked in the full delay model with the continuation software DDE-BIFTOOL. Among other things, we find stable small-amplitude solutions outside the region of linear stability of the pendulum, which can be interpreted as a relaxed form of successful control

    Spectral Statistics of "Cellular" Billiards

    Full text link
    For a bounded planar domain Ω0\Omega^0 whose boundary contains a number of flat pieces Γi\Gamma_i we consider a family of non-symmetric billiards Ω\Omega constructed by patching several copies of Ω0\Omega^0 along Γi\Gamma_i's. It is demonstrated that the length spectrum of the periodic orbits in Ω\Omega is degenerate with the multiplicities determined by a matrix group GG. We study the energy spectrum of the corresponding quantum billiard problem in Ω\Omega and show that it can be split in a number of uncorrelated subspectra corresponding to a set of irreducible representations α\alpha of GG. Assuming that the classical dynamics in Ω0\Omega^0 are chaotic, we derive a semiclassical trace formula for each spectral component and show that their energy level statistics are the same as in standard Random Matrix ensembles. Depending on whether α{\alpha} is real, pseudo-real or complex, the spectrum has either Gaussian Orthogonal, Gaussian Symplectic or Gaussian Unitary types of statistics, respectively.Comment: 18 pages, 4 figure

    Spectral statistics in chaotic systems with a point interaction

    Full text link
    We consider quantum systems with a chaotic classical limit that are perturbed by a point-like scatterer. The spectral form factor K(tau) for these systems is evaluated semiclassically in terms of periodic and diffractive orbits. It is shown for order tau^2 and tau^3 that off-diagonal contributions to the form factor which involve diffractive orbits cancel exactly the diagonal contributions from diffractive orbits, implying that the perturbation by the scatterer does not change the spectral statistic. We further show that parametric spectral statistics for these systems are universal for small changes of the strength of the scatterer.Comment: LaTeX, 21 pages, 7 figures, small corrections, new references adde
    • 

    corecore