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Experimental continuation of periodic orbits through a fold
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We present a continuation method that enables one to track or continue branches of periodic orbits
directly in an experiment when a parameter is changed. A control-based setup in combination with
Newton iterations ensures that the periodic orbit can be continued even when it is unstable. This
is demonstrated with the continuation of initially stable rotations of a vertically forced pendulum
experiment through a fold bifurcation to find the unstable part of the branch.
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Characterizing a nonlinear dynamical system typically
requires the systematic investigation of stable and un-
stable steady-states and periodic orbits in the relevant
parameter region of the system. When a mathemati-
cal model is available this task can be tackled efficiently
by performing a bifurcation analysis with the method of
numerical continuation. It allows one to find and fol-
low (or continue) solutions when varying a parameter —
a technique that can also be used to map out stability
boundaries (bifurcations) in multiple parameters. Sev-
eral software packages are available for this task; see the
review papers [1, 2] as an entry point to the literature.

Although highly developed as a numerical method for
the study of mathematical models, the use of continua-
tion methods in physical experiments has proved much
more difficult. One approach is a combination of system
identification and feedback control as applied by [3, 4] to
equilibria. In principle, it is also applicable to periodic
orbits [5] but, as is reported in [6], these methods do not
generally work well when applied to real physical experi-
ments. An alternative is extended time-delayed feedback
(ETDF) [7, 8], where the system is subject to a feedback
loop with a delay that is given by the period of the peri-
odic orbit one wishes to stabilize. This approach avoids
system identification and, thus, is easier to implement
in real experiments [9]; see also the recent collection of
reviews [10].

An important prototype problem for experimental con-
tinuation is the continuation of a stable periodic orbit
through a fold (saddle-node bifurcation). As one varies
a system parameter the stable periodic orbit gradually
loses stability and then becomes unstable as it ‘turns
around’ at the fold point, which is either a local min-
imum or maximum of the parameter. One problem is
that ETDF and its modifications such as described in [8]
do not converge uniformly near a fold of periodic orbits,
meaning that they can generally not be used to track
the unstable periodic orbit through the fold point; for a
treatment of the autonomous case see [11].

We present and demonstrate here a continuation
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FIG. 1: Photographs taken during continuation tests showing
when the pendulum is at the top of a stable (a) and an un-
stable (b) rotation; the horizontal line (ym = 0) denotes the
zero position.

method that can be used directly in an experiment to
continue periodic orbits irrespective of their stability.
Our method does not require a mathematical model nor
the setting of specific initial conditions. Instead it relies
on standard feedback control. The feedback reference sig-
nal is updated by a Newton iteration that converges to a
state where the control becomes zero. The general ideas
behind this method are described and tested extensively
in simulations in [12].

The goal of this paper is to demonstrate that our
method can indeed be used in an actual experiment
to track periodic orbits reliably through folds to reveal
branches of unstable orbits. To this end, we consider
a classical mechanical experiment: the vertically forced
pendulum.

In our experiment, a pendulum is attached to a pivot
that moves vertically along a trajectory ym(t), which is
controlled via a servo-mechanical actuator; this setup is
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as presented in [13] and shown in the photos in figure 1.
The actuator takes a reference trajectory yr(t) as its in-
put signal and aims to match its output displacement
ym(t) to this reference signal yr(t). If

yr(t) = p sin(ωt) (1)

then the pendulum is harmonically forced in the vertical
direction with forcing frequency ω and forcing amplitude
p. The internal dynamics of the actuator translating the
reference yr into the actual motion ym is only known
approximately. However, when ω is less than 10 Hz and if
the forces exerted by the pendulum are small, the output
ym closely follows yr with a small time lag (≈ 20 ms) and
a small amplitude discrepancy (less than 0.5 mm). The
dynamics of the angular displacement φ of the pendulum
are approximately a single-degree-of freedom system.

We consider here the period-one rotations of the ver-
tically forced pendulum, which are periodic orbits where
the pendulum goes over the top once per forcing period.
For any fixed forcing frequency ω and sufficiently large
value of the forcing amplitude p one finds a dynamically
stable period-one rotation. A characteristic feature of
the stable rotations is the in-phase relationship between
the pendulum and the forcing: the pivot is up when the
pendulum is in the upside-down position; see Fig. 1(a).
For the same values of ω and p one also finds an unsta-
ble rotation, which is in anti-phase with the forcing; see
Fig. 1(b). Both rotations are born (for a given, fixed
ω) in a fold bifurcation at some specific value pf (ω) of
the forcing amplitude, where a Floquet multiplier passes
through 1. Note that the fold point pf (ω) also depends
on the damping; if the damping is small and viscous then
pf (ω) ∼ ω−1 for large frequencies. (In our experiment
with a pendulum of approximate effective length 0.28 m
any frequency ω/(2π) ≥ 2 Hz is large in this sense.)

In the experiment we measure the output

θ(t) = φ(t)− ωt, (2)

which is periodic for a periodic rotation (period one cor-
responds to a period of T = 2π/ω). The rotations are
feedback stabilizable by adding control to the actuator
input yr in (1) based on the difference between the mea-
sured relative angle θ(t) and a periodic reference signal
θ̃(t). Note that feedback control via yr cannot achieve
global stabilization because the amount of control is lim-
ited by the physical restriction of the reference signal yr

to amplitudes less than 3 cm. However, local feedback
stabilization is sufficient for our purposes. Namely, we
superimpose the feedback on the harmonic forcing (1) by
setting the requested pivot trajectory yr to the solution
of

ÿr(t) = −ω2p sin(ωt) + S(φ(t)) PD[θ − θ̃](t) (3)

where S(φ) = 1/ sinφ if | sinφ| > 0.2 and 0 otherwise.
The factor S ensures that control is only applied at non-
zero rotation angles (φ 6= 0, π). The second term in (3) is

a standard proportional-plus-derivative (PD) controller
defined by PD[x] = kpx + kdẋ (kp = kd = 0.4 in this
experiment). Since the angular velocity φ̇ is not directly
measured in the experiment, the term ẋ is approximated
by a linear filter xv = N ·(x−xf ) where xf is the solution
of ẋf = N · (x− xf ) and N is a large quantity (N = 100
in this experiment). The differential equation (3) and
the filter are linear and are solved in real-time in parallel
with the experiment on a dSpace DS1104 RD real-time
controller board. To ensure that the solution of (3) meets
the physical restrictions on the actuator amplitude (ym ≤
3 cm) we reset ẏr whenever φ = 0.

The introduction of feedback control into the experi-
ment via (3) adds a parameter to the overall system: the
(periodic) reference signal θ̃(t). We introduce the scalar
parameter θ̃0 and determine θ̃(t) using the recursion re-
lation (also evaluated in real time)

θ̃h(t) = (1−R)θ̃h(t− T ) +R [θ(t− T )− avg[θ](t− T )]

θ̃(t) = θ̃0 + θ̃h(t) (4)

where T = 2π/ω is the period of the forcing, R ∈ (0, 1]
is a relaxation factor and avg[θ](t) = 1/T

∫ t

t−T
θ(τ) dτ is

the average of the output θ over the last forcing period (it
is a constant scalar for T -periodic functions). We define
the limit

Θ(p, θ̃0) := lim
t→∞

avg[θ](t), (5)

which exists (and the convergence of the time profile is
uniform) for all pairs (p, θ̃0) that are in the vicinity of the
(unknown) family of rotations near fold points. Choos-
ing R closer to zero enlarges the region where the limit
(5) exists but slows down the convergence. Equation (5)
defines a smooth map Θ : R2 7→ R that maps the sys-
tem parameter pair (p, θ̃0) to the asymptotic average of
the output of the experiment. The map Θ is not known
analytically but can be evaluated for any (p, θ̃0) by run-
ning the experiment with control (3) and (4) until the
transients have died out. In practice the limit Θ(p, θ̃0) is
reached after 2–3 seconds during our experimental runs.

The reference signal θ̃(t) corresponds to a natural pe-
riodic rotation of the original (uncontrolled) vertically
forced pendulum if and only if the difference θ − θ̃ is
zero, making the feedback control non-invasive. This is
the case when the fixed point equation

Θ(p, θ̃0)− θ̃0 = 0 (6)

is satisfied. For parameter pairs (p, θ̃0) satisfying (6) the
parameter θ̃0 is equal to the average of the phase differ-
ence between the rotation and the forcing.

Our scheme is a modification of the classical ETDF
scheme [7, 14]. The core of this modification is the
solution of the fixed point problem (6) by means of
a Newton iteration. Classical ETDF corresponds for
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small R and a fixed p to a relaxed fixed point iteration
θ̃0,new = (1 − R)θ̃0,old + RΘ(p, θ̃0,old) for equation (6),
which is known to diverge for the unstable rotations [10].
At the fold point (pf , θ̃0,f ) the partial derivative ∂2Θ
equals 1, and this makes the fixed-point problem (6) sin-
gular.

To overcome this singularity we embed (6) into a
pseudo-arclength continuation [1]. The pairs of (p, θ̃0)
satisfying (6) form a curve. We introduce y = (p, θ̃0)T ,
and extend (6) by the pseudo-arclength condition

yT
t (y − yold) = h (7)

where h is the (small) stepsize along the curve, yold is
the previous point along the curve and yt is the unit se-
cant through the previous two points along the curve (as
a practical approximation of the tangent to the curve).
Equations (6) and (7) define a system of equations of the
form F (y) = 0. They can be solved by a relaxed quasi-
Newton recursion and we choose the recursion with Broy-
den’s rank-one update; see [12] for the technical details.

To start a continuation we choose a large forcing am-
plitude p (2 cm). For large p the basin of attraction of the
stable rotation of the uncontrolled system is large enough
to find the rotation by swinging up the pendulum manu-
ally. We measure the periodic output θ and set the initial
parameter θ̃0 to the average of this output, thus defining
the initial y = (p, θ̃0)T . In the actual implementation
we scale p by a factor of 20 such that both components
of the vector y are of order one; the approximate initial
secant to the curve is set to yt = (−1, 0)T . The initial
guess for the quasi-Newton Jacobian is J =

[−1 0
0 1

]
.

Figure 2(a) shows four branches of rotations in the
(p, θ̃0)-plane as continued by our method. Each branch
is for a different, fixed forcing frequency ω and vary-
ing forcing amplitude p, continued from a stable rotation
near the point A through the fold to an unstable rotation
near the pointB. The upper part of a branch corresponds
to stable and the lower part to unstable rotations. The
larger circles on each of the branches in panel (a) are the
approximate values of the fold points pf (ω). Figure 2(b)
shows the location of the fold points in the (ω, p)-plane
in comparison with the theoretical prediction (thin solid
curve) based on a viscous damping approximation.

Each of the four branches in Fig. 2(a) is made up
of points at which the quasi-Newton recursion has con-
verged; in practice we accept a point when the difference
θ− θ̃ in equation (3) is below 5×10−3 (during one forcing
period). An experimental continuation run is performed
as one continuous experiment without stopping or man-
ual intervention; it takes about 30 minutes for a curve
resolution as in Fig. 2(a). The experimental continua-
tion stops at the lower end point of the branches, where
we found that the recursion (4) becomes unstable at a pe-
riod doubling. This is a similar effect as for the classical
ETDF recursion, which has been found to lose stability
in a torus bifurcation [15].
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FIG. 2: Experimental one-parameter bifurcation diagrams
(a) for 2 Hz, 3 Hz, 4 Hz, 5 Hz, respectively, showing experi-
mentally measured rotations (small circles: hollow for sad-
dle rotations, full for stable rotations) and estimated fold
points (large full circles). Panel (b) shows the fold points
in (ω, p)-plane (circles) in comparison with a viscous model
estimate (thin solid line). Parameters values in (3), (4), (7)
were kp = kd = 0.4, R = 0.8, h = 0.02, and convergence
tolerance 5× 10−3.
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FIG. 3: Variation of the phase compared to experimental ac-
curacy near the fold for ω = 3 Hz. The error bars indicate the
maximum of |p− pm|, where pm is the amplitude of the pivot
displacement ym. Hollow circles: parameter p as obtained by
quasi-Newton iteration; full circles: pm as measured.

Figure 3 shows an enlargement of the branch near the
fold for a forcing frequency of ω = 3 Hz. Horizontal error
bars have been attached to each point (the vertical error
in θ̃0 is invisibly small). The size of the horizontal error
bars highlights the extreme difference in the scale of the
axes: the range of p is 1 mm, which is of the order of a few
multiples of the experimental accuracy, whereas θ̃0 spans
a range of approximately 60 degrees. This implies that
in a small parameter region of p near the fold, between
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FIG. 4: Time profiles during the experimental continuation
run for ω/(2π) = 3 Hz ((a, b, d) measured, (c, e) set by quasi-
Newton iteration).

4.5 mm and 5.5 mm, the response of the uncontrolled pen-
dulum (the average phase avg[θ] of the rotation relative
to the forcing) changes by 60 degrees. Thus, the fold sce-
nario presented in Fig. 3 is an example of a very sensitive
dependence of the response (the phase of the rotation)
of a nonlinear dynamical system on its system parameter
(the forcing amplitude p). This implies that the rotations
shown in Fig. 3 would be extremely difficult to find by
careful parameter tuning with the available experimen-
tal equipment even on the stable part of the branch near
the fold. By contrast, our continuation method follows
the branch of rotations through the rapid change with-
out difficulty: the dependence of the feedback controlled
pendulum on the parameter pair (p, θ̃0) is not sensitive
and the resulting nonlinear system (6)–(7) is uniformly
well-conditioned near the fold.

To provide more insight into how points on branches
are accepted, Fig. 4 shows a 30 s snapshot of the time
profile of the experimental continuation run for 3 Hz.
Panel (a) shows the difference θ − θ̃0 and panels (b)–(e)
the quantities θ, θ̃0, ym and p as updated by the quasi-
Newton iteration at discrete times. Filled circles along
the time profile in Fig. 4(a) indicate when the difference
θ− θ̃0 is accepted as sufficiently small. Then the respec-
tive point (p, θ̃0) is accepted and we start the next step
along the branch (by updating yold and yt in the pseudo-
arclength condition (7)). As a result, the difference θ− θ̃0
jumps briefly to a much larger value. The Newton iter-
ation then drives the system to convergence; the open
circles indicate that θ − θ̃0 is periodic. At these points

avg[θ] is measured and new parameters p and θ̃ are set
to initiate the next Newton iterate.

In conclusion, we have presented a control-based con-
tinuation method and demonstrated that it is capable
of tracking periodic orbits through fold bifurcations in
a vertically forced pendulum experiment. Our approach
does not require knowledge of an underlying mathemat-
ical model. Instead, residuals of a Newton iteration are
directly measured in order to drive the control action to
zero to find the next point on a branch. Importantly,
this Newton iteration does not have to run in real-time.
Hence, our method can be applied to any experiment
that is feedback stabilizable in the classical sense [16].
Our ongoing work focuses on control-based continuation
of bifurcations in more than one parameter and for hybrid
tests, where a laboratory experiment of a critical compo-
nent is coupled bidirectionally to a numerical model of
the remainder of the tested system.
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