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DYNAMICS OF AN INVERTED PENDULUM
SUBJECT TO DELAYED CONTROL
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Mathematics, Queen’s Building, University of Bristol, BS8 1TR, U.K.
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E-mail: B.Krauskopf@bristol.ac.uk

We investigate an inverted pendulum on a cart subject to a delayed feedback control
force which tries to balance the pendulum. This is modelled by a two-dimensional
system of delay-differential equations and can be considered as a prototype sys-
tem for control problems arising in mechanical engineering. The linear stability
analysis shows that there is only a bounded region of linear stability of the origin
(corresponding to successful balancing), and identifies a singularity of codimension
three as the organizing center for all dynamics of small amplitude.

Here we present the numerical bifurcation analysis of the ordinary differential
equation governing the dynamics on the three-dimensional center manifold. This is
compared directly with a bifurcation study of the full delay system in the vicinity
of the singularity.

1. Introduction of the mathematical model

We consider the classic control problem?7”

on a motorized cart on a track (see Ref. [*] for further references and details
of the analysis). The goal of the feedback controller is to control the pen-
dulum in the upright position, where the control action is the movement of
the cart.

The dynamics of the inverted pendulum are given by the non-

of an inverted planar pendulum

dimensionalized second-order differential equation for the angle 6 of its
deviation from the upright position:

<1 - % cos? 0) 6+ %692 sin(26) — (siné + D cosf) = 0. (1)

*The research of J.S. is supported by EPSRC Grant GR/R72020/01.
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Here ¢ is the relative mass of the uniform pendulum with respect to the
mass of the cart, and D is the horizontal driving force applied to the cart.
The dynamics of the displacement § of the cart depends on 6 by

§_ L% sinf9? + 2D — £ sin(26)
1— 3 cos?6

2)

where L is the length of the pendulum. The force D is applied as a feedback
control depending on the state of the system with the goal of stabilizing
the pendulum at its upright position, # = 0. Due to inherent delays, the
feedback control force D is a function of the state of the system at some
fixed delay time 7 ago. We consider the situation that this delay is not
negligible and are interested in its influence on the dynamics of the overall
system. To this end, we study the case of a linear control force

D(t) = —ab(t — ) — bO(t — 1) (3)

with the control gains a and b. Note that increasing the delay time 7 is
equivalent to decreasing the length L of the pendulum.

After rescaling the delay time to 1, equation (1) can be written as a
delay differential equation (DDE) of the form

#(t) = fz(t),2(t = 1),) (4)

which relates to (1) and (3) by setting ; = 6, 2o = 6 and X\ = (a,b,7).
The right-hand-side f : R? x R2 x R®> — R? has the form
fl(mayak) = T2
—3esin(2zy)23 + T sinay — cosay (T2ay; + Thyz) (5)

fQ(mayvk): .

1- %5 cos? 11

The phase space of (4)—(5) is the space of continuous functions over the
delay interval [—1,0] with values in R?.
System (4)—(5) has Zy-symmetry, because

f(_ma -Y, A) = _f(l',y; A) (6)

Consequently, the origin 0 is always an equilibrium, and any solution of
(4)—(5) is either symmetric under this symmetry or has a counterpart under
reflection at the origin. A stable symmetric attractor close to 0 corresponds
to successful balancing of the pendulum whereas 6(t) is always unbounded
for t — oo for any non-symmetric attractor.
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2. Linear stability analysis of the origin

The origin undergoes a pitchfork bifurcation for @ = 1 (two non-symmetric
equilibria emerge for a > 1) and it has a pair of purely imaginary eigenvalues
+iwT (w € R) if

o= cos(wr) {wQ (1 - %) + 1} b= w [wQ (1 - %) + 1} M)

which generically implies a Hopf bifurcation. These two bifurcations form
curves in the (a, b)-plane as is sketched in Fig. 1. The Hopf curve emanates

P 1=0
i 0
1 =
DZ‘Z_
b4 e pitchfork bifurcation DZ double-zero eigenvalue singularity
e Hopf bifurcation TZ triple-zero eigenvalue singularity
a PHy pitchfork-Hopf interaction

Figure 1. Sketches of local bifurcation curves in the (a,b)-plane for different values of
7. The number of unstable eigenvalues of the origin is indicated in each region.

from a double-zero eigenvalue singularity, DZ, where (a,b) = (1,7) and spi-
rals outward in counterclockwise direction for 7 > 0. A bounded parameter
region of linear stability exists for delays T € (0,7.) where 7, := /8 —6¢
is the critical delay”. At A\, = (a,b,7) = (1,7, 7.) the double-zero eigen-
value singularity DZ and the first pitchfork-Hopf interaction PH; coincide
and the region of linear stability shrinks to a point 7'Z which is a triple-
zero eigenvalue singularity of the origin. For 7 > . there can be no stable
small-amplitude dynamics as the origin has at least one strongly unstable
eigendirection. The triple-zero eigenvalue bifurcation T'Z at A, organizes
the stable small-amplitude dynamics of system (4)—(5). The unfolding of
the generic triple-zero eigenvalue bifurcation was studied in Ref. [*]; the full
dynamics of the normal form are not well understood. A special case with
the same symmetry (6) was recently found in Chua’s circuit®.
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3. Dynamics on the center manifold near the singularity

Near the triple-zero singularity A., system (4)—(5) has a three-dimensional
center manifold at the origin. We compute the basis B for the center
invariant subspace of the origin for its linearization, split x = Bu + z into
a center part u € R® and a hyerbolic part z, zoom into the neighborhood
of the origin by using the rescaling

3 5 7 )
)

(w1, u2,us) = (r°uy, r°us, r us z =13z, t—rit,

1 1 1 (8)
azl-{—grﬁa, b:T*+T*§r2B, T:b+T*§7°4’)/,
and expand the flow on the center manifold in terms of the small scaling

parameter . This procedure® results in the following theorem:

Theorem 3.1. The flow of system (4)—(5) on the center manifold of the
origin for parameter values A near \. is governed by the system of ordinary
differential equations

010 0
U= 0 01w+ 0 + TQR('UaOé:B:’%r) (9)
—ayf uy

where R is a smooth function with respect to all arguments.

We call system (9) for r = 0 the truncated system. As it has cone structure
we can restrict our bifurcation analysis to the parameter sphere a® 4+ 32 +
7% = 1, which we parametrize by

a = sin gap, B = cos ggo cos2myp, v = cos ggo sin 2m).

Any phenomenon found in the truncated system that is robust with respect
to regular perturbations exists in (9) and, thus, in (4)-(5) as well. Fig. 2(a)
shows the bifurcation diagram of the truncated system in the (p,1)-plane
as computed with AUTO?. The most prominent feature of the diagram is
region II of stable symmetric periodic motion next to region I of linear sta-
bility of the origin. The two-parameter family of symmetric periodic orbits
undergoes infinitely many pitchfork bifurcations and is bounded by a Hopf
bifurcation, a curve of heteroclinic connections between the non-symmetric
saddle equlibria, and a curve of figure-eight homoclinic connections to the
origin. The curves of heteroclinic and homoclinic connections spiral toward
the point HC where a multiple heteroclinic chain exists.

For comparison Fig. 2(b) shows a part of the bifurcation diagram, as
computed with DpE-BIrTo0L5, for the full DDE system (4)—(5) for the
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parameter sphere around 7'Z of radius r = 0.5 (see scaling (8)) and € = 0.
Figures 2(a) and 2(b) agree not only qualitatively but also quantitatively
which illustrates that the triple-zero singularity indeed acts as an organizing
center for the small-amplitude dynamics of the DDE system (4)—(5) for a
large parameter range.

1
Z,
U - .
----------- pitchfork bifurcation
osk Hopf bifurcation
’ - pitchfork bifurcation of limit cycles
(a) PH; HC heteroclinic cycle <>
07 HC----DZ. pair of homoclinic cycles o
- - saddle-node of limit cycles
= torus bifurcation (nonsym. only)
06| ——— period doubling (nonsym. only)
‘ Dz_ DZ_  double-zero eigenvalue
053 0 (transversally stable)
1 DZ_ double-zero eigenvalue
57 ~. (transversally unstable)
+ AN PH, pitchfork-Hopf interaction
ot "\ HC HC multiple heteroclinic chain
AN PF pitchfork-fold interaction
N N of limit cycles
08 RN N codimension-2 changes of saddle quan-
(b) PH, S ND @ ®ND Q\ND tities along curves of connecting orbits:
\ DE degenerate eigenvalue
0Ty ) NS neutral saddle
)/ ND neutral divergence
o
0.6 | Rt ’ a
-~ s
DZ_ = -
05 E
-0.2 0 0.2 0.4 0.6 © 1

Figure 2. Comparison between (a) the bifurcation diagram for the truncated system
(9), and (b) a partial bifurcation diagram for the DDE system (4)—(5) in the (¢, %)-plane.
(Gray curves in panel (a) are of bifurcations of non-symmetric equilibria and periodic
orbits, which are not shown in panel (b).)

4. Conclusions

We have studied a triple-zero eigenvalue singularity on its center manifold in
a Zo-symmetric DDE system by center manifold reduction and a numerical
bifurcation analysis of its partial unfolding. In this way, we have found a
region of stable small-amplitude motions for the pendulum with delayed
feedback control even outside the region of linear stability.
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We finish with some challenges for future work. First, it remains an

open problem to find the complete unfolding of the triple-zero eigenvalue
singularity. Second, it would be interesting to know whether it is possible
to find controllers that stabilize small-amplitude motion for values of the
delay 7 above the critical delay 7. Finally, we plan to extend our analysis
to more realistic balancing models that include physical effects such as
backlash, and this leads to discontinuities in the right-hand-side.
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