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Tracking nonlinear oscillations with
time-delayed feedback

J. Sieber1 and B. Krauskopf 1∗

April 10, 2006

We demonstrate a method for tracking the onset of nonlinear oscillations (Hopf
bifurcation) in nonlinear dynamical systems. Our method does not require a math-
ematical model of the dynamical system but instead relies on feedback controlla-
bility. This makes the approach potentially applicable in an experiment. The main
advantage of our method is that it allows one to vary parameters directly along
the stability boundary. In other words, there is no need to observe the transient
oscillations of the dynamical system for a long time to determine their decay or
growth. Moreover, the procedure automatically tracks the change of the critical
frequency along the boundary and is able to continue the Hopf bifurcation curve
into parameter regions where other modes are unstable. We illustrate the basic
ideas with a numerical realization of the classical autonomous dry friction oscilla-
tor.
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Figure 1: Set-up of an idealized dry friction oscillator with feedback f

1 Introduction

Dynamical systems can change their behavior qualitatively when one changes one or more
parameters of the system. A common and typical change is a loss of stability of a stable equi-
librium of the system in a Hopf bifurcation when a complex conjugate pair of eigenvalues
of its linearization crosses the imaginary axis under variation of a single parameter. At the
critical parameter value a family of oscillations is born. If the system is nonlinear then the os-
cillations are nonlinear as well, and, typically, they are either stable (supercritical Hopf bifurca-
tion) or unstable (subcritical Hopf bifurcation). This scenario is well understood theoretically
[1]. If the dynamical system is described mathematically in the form of a differential equation
there are numerical tools available [1, 2] that can track curves where Hopf bifurcations occur
in two-dimensional parameter planes, thus, identifying parameter regions of linear stability
and regions of oscillations.

If the dynamical system is given in the form of an experiment the task of tracking the Hopf
stability boundary by varying parameters is quite challenging. One approach is to run the
experiment close to its stability boundary for a sufficiently long time to determine if the tran-
sients decay or grow. As the transient decay or growth is often very slow close to the stability
boundary this procedure is time-consuming and produces results of low accuracy.

In this paper we present an alternative method. It assumes that the dynamical system is
feedback-controllable and that the control input and the system parameters of interest can
be varied automatically with a precision that corresponds to the accuracy of the desired re-
sults. The core algorithm (a continuation) provides an iterative computational method that
prescribes a sequence of control inputs and parameter values and a criterion that decides
which of these parameter values lie on the stability boundary. The computations have to be
performed in parallel to running the dynamical system (for example, the experiment), but
not in real time. Importantly, it is not necessary to set initial values of the dynamical system
(which would involve stopping and reinitializing the experiment). Moreover, the dynamical
system always remains in a stable regime with a closed stabilizing feedback loop, so that our
method does not require to run the dynamical system freely close to its stability boundary.

Our method is ideally suited for dynamical systems posed by computer-controlled experi-
ments, especially for hybrid tests such as real-time dynamic substructuring tests of mechanical
engineering systems [3]. These tests couple an experimental test specimen of a poorly un-
derstood or critical component in real time (and bidirectionally) to a computer simulation of
the remainder of the structure. One of the central goals of these hybrid experiments is the
tracking of stability boundaries. The automatic and precise variation of parameters and the
feedback controllability, which our method requires, are particularly easy to achieve in hybrid
tests since they are in part run as a computer simulation.
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Figure 2: Diagram of the experimental results from [4] showing the velocity v versus the am-
plitude of oscillations. Dots show the amplitude of measured stick-slip oscillations
(fitted with a solid line) and squares refer to measured equilibria. The dashed line
connecting the transitions is the conjectured family of dynamically unstable peri-
odic orbits. (Reprinted with kind permission from G. Stépán; translations from the
Hungarian original courtesy of G. Orosz.)

2 The dry friction oscillator with constant forcing and feedback
control

As our illustrating example we consider a dry friction oscillator with constant forcing; see
Fig. 1. The friction between the running belt and the mass induces a force on the mass, push-
ing it against the damped spring that is fixed to the wall. The overall force on the mass at
position x is −Kx − Cẋ − Ff (ẋ − v) where x is measured with respect to the reference posi-
tion of the relaxed spring, K is the spring constant, C is the damping, Ff is the force exerted
by the friction, and v is the velocity of the running belt. The dynamic behavior of this non-
linear single-mass-spring-damper system changes qualitatively when one varies the system
parameter v. For large v the rest state (equilibrium) x0, given by x0 = −Ff (−v)/K and ẋ = 0,
is stable. At a critical velocity vh the rest state x0 loses its stability in a subcritical Hopf bi-
furcation. If one decreases v gradually from above vh to below vh one observes a sudden
transition to large-amplitude stick-slip oscillations. Similarly, when increasing v in the stick-
slip oscillation regime the system jumps to a stable equilibrium at a critical velocity vd > vh.
The bistability between stable stick-slip oscillations and a stable equilibrium in the parameter
region [vh, vd] has been observed experimentally in [4] for a mass on a large rotating disc; see
also [5].

Figure 2 shows a sequence of experimental measurements from [4] for different values of
the velocity v. Modeling and general theory predict that a family of unstable periodic orbits
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Figure 3: Friction law Ff (w) used in Eq. 3 for the parameters Fc = −0.5, Fs = 2 and Fv = 0.3.

separates the two stable regimes for parameters v in the interval [vh, vd].
We simulate the experiment shown in Fig. 1 under the conditions of applying an additional

feedback force to the mass of the form

f [x − x̃1, ẋ − x̃2] = − (k1[x − x̃1] + k2[ẋ − x̃2]) . (1)

The output of our simulation is the time profile (x(t), ẋ(t)) of the ordinary differential equa-
tion (ODE)

Mẍ + Cẋ + Ff (ẋ − v) + K · x = − (k1[x − x̃1] + k2[ẋ − x̃2]) (2)

with the dimensionless parameters K = 1, M = 1, k1 = 1 , k2 = 2, and, initially, C = 0. As the
friction law we choose

Ff (w) = [Fc + (Fs − Fc) exp(−|w|) + Fv|w|] sign(w), (3)

which gives the velocity-force curve shown in Fig. 3 with the parameters Fc = −0.5, Fs = 2
and Fv = 0.3. In order to mimic the experimental situation we add 1% noise to the right-
hand-side of Eq. 2 and to the output, and restrict the evaluation of the time profile x(t) to a
sampling in constant steps of length 0.01.

Eq. 2 with friction law Eq. 3 gives rise to a (subcritical) Hopf bifurcation if

v = − log ([Fv + C]/[Fs − Fc]) .

Since we focus on the Hopf bifurcation and the smooth (non-sticking) unstable periodic orbits,
the argument w is always negative in Eq. 3.

3 Control-based continuation of Hopf bifurcation

The procedure for control-based continuation, introduced in [6], is based on a continuation of
fixed points of a nonlinear input-output map X. It can be applied as follows to the continu-
ation of Hopf bifurcations in the context of a dry friction oscillator. Specifically, we illustrate
how one can find the Hopf bifurcation curve in the (v, C)-plane.
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Input-output map: The dry friction oscillator is controllable by the feedback given in Eq. 1.
Thus, the dynamical system in Eq. 2 defines a map X : R6 7→ R6 in the following way. First,
set the control target

x̃(t) = [x̃1(t), x̃2(t)] = ξ̃ + cos(2πt/T)η̃ + sin(2πt/T)ζ̃ (4)

where ξ̃, η̃ and ζ̃ are all in R2 and T is the period of the forcing. Second, let the controlled
dynamical system relax to its controlled steady state x(t) (which has period T). Finally, project
x(t) onto its first two Fourier modes:

ξ =
1
T

∫ T

0
x(t) dt, η =

2
T

∫ T

0
cos(2πt/T)x(t) dt, ζ =

2
T

∫ T

0
sin(2πt/T)x(t) dt. (5)

The map X is defined by (ξ̃, η̃, ζ̃) 7→ (ξ, η, ζ) and depends on the parameters v and C, and the
period T. One evaluation of the map X involves running the controlled dynamical system
until it has relaxed. For successive evaluations of X for a sequence of (ξ̃, η̃, ζ̃) that are close to
each other it is not necessary to reset the initial values of the dynamical system.

If T is chosen appropriately and the amplitude of the forcing in Eq. 4 is small (that is,
‖η̃‖2 + ‖ζ̃‖2 − r2 = η̃T η̃ + ζ̃T ζ̃ − r2 = 0 and r small) then the map X has a fixed point, which
corresponds to an almost harmonic oscillation of amplitude r close to the Hopf bifurcation.
The following continuation procedure tracks this small periodic orbit.

Initialization: Suppose we have an initial guess for a Hopf bifurcation point, its parame-
ters (v0, C0), its location ξ0 = (x0, 0), its critical frequency 1/T0, and its critical eigenspace
cos(2πt/T0)η0 + sin(2πt/T0)ζ0. We correct the initial guess by solving

0 = X(ξ̃, η̃, ζ̃, T, v, C)− (ξ̃, η̃, ζ̃) (6)
0 = η̃T η̃ + ζ̃T ζ̃ − r2 (7)
0 = ζT

j−1[η̃ − ζ j−1] + ηT
j−1[ζ̃ − ηj−1] (8)

iteratively for the variable y = (ξ̃, η̃, ζ̃, T, v) ∈ R8 and for fixed C = C0, (small) r, and j = 1.
The point y1 := (y, C0) ∈ R9 is the first point on the Hopf curve and yt

1 = (0, 0, 0, 0, 0, 0, 0, 0, 1)
is its initial direction.

Prediction (step j): Set yp
j = yj−1 + syt

j−1 as initial guess for the next point on the Hopf curve.
The quantity s is the pseudo-arclength step-size along the Hopf curve [1].

Correction (step j): Solve system Eq. 6–Eq. 8 extended by

0 = [yt
j−1]

T[y− yp
j ], (9)

iteratively starting from yp
j . The root yj := (ξ̃, η̃, ζ̃, T, v, C) ∈ R9 is the next point on the curve

and yt
j := [yj − yj−1]/‖yj − yj−1‖ is the secant for the prediction step j + 1.

Iteration of prediction and correction is a standard procedure for the continuation of solu-
tions of parameter-dependent nonlinear problems; it is implemented in numerical software
such as AUTO [2] for the case that the dynamical system is given as an ordinary differential
equation. Eq. 7 fixes the radius of the small periodic orbit, Eq. 8 fixes its phase, and Eq. 9
reparametrizes the solution curve with respect to its pseudo-arclength. Eq. 8 and Eq. 9 are
well established in the context of numerical continuation methods [1]. Possible methods for
the corrector iteration and the initialization are:
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Figure 4: Result of the Hopf bifurcation continuation in the (C, v)- and (T, v)-parameter
planes. The analytically known Hopf curve of Eq. 2 is shown as a solid curve. The
parameter components of the solution yj of iteration Eq. 6–9 are marked as dots. The
doashed line at v = 0.6 marks the parameter value for the grazing event of the small
periodic orbit.

(a) a relaxed fixed point iteration,
(b) a Newton iteration where the linearization of X is obtained by a finite difference approxi-
mation,
(c) a Quasi-Newton iteration (based, for example, on Broyden updates).

Stabilization by extended time-delayed feedback control [7] corresponds in its limit to the
fixed point iteration (a) applied to Eq. 6. It cannot be expected to work in general, in particular,
not for system Eq. 6–Eq. 9 which is close to singular for small r. The Newton iteration is
expensive as it requires the evaluation of X ten times per iteration (nine times to obtain the
linearization because y ∈ R9). On the other hand, it is the most robust and the available
linearization can be used to compute the tangent to the curve at no extra cost. Quasi-Newton
methods require only one evaluation of X per iteration, being very efficient if successful (as
the cost of the linear algebra is negligible), but they are less robust.

Here we perform the continuation using a Quasi-Newton iteration for all steps j > 1 with
a rank-one Broyden update for the linearization of Eq. 6, extended by the analytically known
derivatives of Eq. 7–Eq. 9. This iteration converges quickly for system Eq. 6–Eq. 9 if one
replaces X by its second iterate X ◦ X in Eq. 6 and chooses r not too small. The initialization
step is performed with a full Newton iteration. We choose the radius r = 0.6, a tolerance
of 0.01 for the correction (requiring at least two corrections and that the last correction step
and the residual δ of system Eq. 6–Eq. 9 are below tolerance), and a maximum of 0.06 for the
step-size s in the predictor.

4 Tracking the subcritical Hopf bifurcation of the dry friction
oscillator

Figure 4 and Fig. 5 present the results. Figure 4 shows the solution yj of system Eq. 6–Eq. 9
in the (C, v)-plane and in the (T, v)-plane (dots) and compares them with the analytically
known Hopf curve and period (solid curve) of the underlying dynamical system Eq. 2. The
procedure started at C = 0 and tracked the Hopf curve toward increasing C. We observe that
the branch follows the Hopf curve with a small but systematic error up to v ≈ r (r = 0.6). The
systematic error is caused by the finite (non-zero) amplitude of the tracked orbit and gives a
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Figure 5: Time profiles along the part of the Hopf curve in the grey region of Fig. 4. Panel (a)
shows the control input x̃, panel (b) the difference x − x̃ between input and output,
panel (c) the logarithm of the norm of the residual δ of the right-hand-side of Eq. 6–9,
and the panels (d)–(f) show the bifurcation parameters v, C and T.

deviation toward larger damping because the underlying Hopf bifurcation is subcritical (the
orbit tracked by iteration of system Eq. 6–Eq. 9 is dynamically unstable).

The behavior of the solutions yj for v ≤ r = 0.6 shows that the method may produce spuri-
ous solutions when the the tracked small periodic orbit is no longer harmonic. At v = r = 0.6
(dashed line in Fig. 4) the tracked orbit grazes the discontinuity curve ẋ = v of the friction law;
see Fig. 3. This grazing gives rise to a distinctly non-harmonic stick-slip output x(t). In order
to be able to track the Hopf curve toward smaller v one has to decrease the radius parameter
r in Eq. 7. We remark that such spurious solutions can be automatically detected in practice
by comparing the output to its projection onto the first Fourier components. The correction
of system Eq. 6–Eq. 9 also generates large residuals and correction steps close to the grazing
event.

Figure 5 shows details of the temporal behavior of the iteration along the part of the branch
in Fig. 4 that is in the grey region (around C = 0.5). The crosses in panel (c) show the times at
which the experimental output was considered sufficiently stationary to be accepted as output
of the map X. The comparison to the input x̃ in panel (a) shows that the relaxation toward
an acceptable state takes approximately two or three periods. (The tolerance for acceptance is
10−3 with respect to the L2-norm over the period.) Figure 5(b) shows the difference between
input x̃ and output x. The y-axis in panel (c) shows the logarithm of the Euclidean norm of the
residual of the right-hand-side of system Eq. 6–Eq. 9. Figure 5(d)–(f) display the parameters v,
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C and T. The squares in Fig. 5(c) mark those residuals that have been accepted as sufficiently
small (together with the last correction). The parameters v, C and T at the time of acceptance
correspond to dots in the grey rectangle along the curve in Fig. 4. According to Fig. 5(c), on
average, the Broyden update needs less than ten evaluations of the right-hand-side of Eq. 6–
9 to achieve the tolerance, making it more efficient than a full Newton iteration. Along the
branch of Fig. 4 up to v = r = 0.6 the input-output map X has been evaluated 135 times,
corresponding to an overall simulation time of 2207.24 in dimensionless units (roughly 350
periods). This excludes the initial Newton iteration, which needs 80 evaluations of X.

5 Conclusions and future work

We have presented a method that allows for direct tracking of the onset of nonlinear oscilla-
tions in nonlinear dynamical systems depending on two parameters. The method does not
require a model of the dynamical system, so that it is applicable to the tracking of stability
boundaries in experiments and substructuring tests.

Future work will be concerned with the implementation of this idea into prototype sub-
structured experiments, such as mass-spring-damper and mass-spring-pendulum systems
[8]. The approach outlined in this paper can also be generalized to enable it to track fami-
lies of unstable nonlinear oscillations and their bifurcations (period-doubling, saddle-node,
torus, symmetry-breaking and homoclinic bifurcations).
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