248 research outputs found

    Isolation and Characterization of Two Novel, Cytoplasmically Polyadenylated, Oocyte-Specific, Mouse Maternal RNAs

    Get PDF
    AbstractDuring early development in mouse andXenopus,translational activation of stored maternal mRNAs by cytoplasmic polyadenylation requires both the nuclear polyadenylation signal AAUAAA and U-richcis-acting adenylation control elements (ACEs), also termed cytoplasmic polyadenylation elements, located in the 3′ UTR. Using an ACE-based PCR strategy (Salléset al.,1992) we have isolated two novel cDNAs from mouse oocytes: OM2a and OM2b (for Oocyte Maturation). Each message contains an ACE consensus sequence upstream of AAUAAA, is specifically transcribed in the growing oocyte, and is cytoplasmically polyadenylated upon oocyte maturation. Comparison of the mouse and rat homologs reveals considerable nucleotide sequence homology and conservation of overall gene organization. However, the predicted open reading frames are far less conserved, suggesting that these genes may not be functioning as proteins. The tissue specificity and tight temporal regulation of the RNAs suggest a role for these genes during early development

    Who Treats Patients with Diabetes and Compensated Cirrhosis

    Get PDF
    Increasingly, patients with multiple chronic conditions are being managed in patient-centered medical homes (PCMH) that coordinate primary and specialty care. However, little is known about the types of providers treating complex patients with diabetes and compensated cirrhosis

    Products as Affective Modifiers of Identities

    Full text link
    © The Author(s) 2015. Are salesclerks seen as better, more powerful, or more active when they drive Mustangs? What about entrepreneurs? What about driving a mid-sized car? Intuitively, we have ideas about these, but much of the research on the affective nature of products is on purchasing, desires, and self-fulfillment. Drawing on symbolic interactionism, we argue that people's association with products has some basis in the impression management of their identity. For this to occur, there must be some cultural consensus about the way that products modify identities. Drawing on affect control theory's (ACT) methodology and equations, we measure the goodness, powerfulness, and activeness of several products, identities, and the associated product-modified identities to explore how products function as affective modifiers of identities. We find consistent effects across several types of technology products, whereby products pull the modified identity in the direction of the products' affective qualities. Support is established for the ACT equations that predict how traits modify identities as also having utility for predicting how products modify identities. This suggests that the opening questions can be answered empirically by measuring cultural-specific sentiments of the identity and the product and by developing equations to predict the identity modification process

    Arginase activities and global arginine bioavailability in wild-type and ApoE-deficient mice: Responses to high fat and high cholesterol diets

    Get PDF
    Increased catabolism of arginine by arginase is increasingly viewed as an important pathophysiological factor in cardiovascular disease, including atherosclerosis induced by high cholesterol diets. Whereas previous studies have focused primarily on effects of high cholesterol diets on arginase expression and arginine metabolism in specific blood vessels, there is no information regarding the impact of lipid diets on arginase activity or arginine bioavailability at a systemic level. We, therefore, evaluated the effects of high fat (HF) and high fat-high cholesterol (HC) diets on arginase activity in plasma and tissues and on global arginine bioavailability (defined as the ratio of plasma arginine to ornithine + citrulline) in apoE-/- and wild-type C57BL/6J mice. HC and HF diets led to reduced global arginine bioavailability in both strains. The HC diet resulted in significantly elevated plasma arginase in both strains, but the HF diet increased plasma arginase only in apoE-/- mice. Elevated plasma arginase activity correlated closely with increased alanine aminotransferase levels, indicating that liver damage was primarily responsible for elevated plasma arginase. The HC diet, which promotes atherogenesis, also resulted in increased arginase activity and expression of the type II isozyme of arginase in multiple tissues of apoE-/- mice only. These results raise the possibility that systemic changes in arginase activity and global arginine bioavailability may be contributing factors in the initiation and/or progression of cardiovascular disease

    In the dedicated pursuit of dedicated capital: restoring an indigenous investment ethic to British capitalism

    Get PDF
    Tony Blair’s landslide electoral victory on May 1 (New Labour Day?) presents the party in power with a rare, perhaps even unprecedented, opportunity to revitalise and modernise Britain’s ailing and antiquated manufacturing economy.* If it is to do so, it must remain true to its long-standing (indeed, historic) commitment to restore an indigenous investment ethic to British capitalism. In this paper we argue that this in turn requires that the party reject the very neo-liberal orthodoxies which it offered to the electorate as evidence of its competence, moderation and ‘modernisation’, which is has internalised, and which it apparently now views as circumscribing the parameters of the politically and economically possible

    Common Data Elements to Facilitate Sharing and Re-use of Participant-Level Data: Assessment of Psychiatric Comorbidity Across Brain Disorders

    Get PDF
    The Ontario Brain Institute\u27s “Brain-CODE” is a large-scale informatics platform designed to support the collection, storage and integration of diverse types of data across several brain disorders as a means to understand underlying causes of brain dysfunction and developing novel approaches to treatment. By providing access to aggregated datasets on participants with and without different brain disorders, Brain-CODE will facilitate analyses both within and across diseases and cover multiple brain disorders and a wide array of data, including clinical, neuroimaging, and molecular. To help achieve these goals, consensus methodology was used to identify a set of core demographic and clinical variables that should be routinely collected across all participating programs. Establishment of Common Data Elements within Brain-CODE is critical to enable a high degree of consistency in data collection across studies and thus optimize the ability of investigators to analyze pooled participant-level data within and across brain disorders. Results are also presented using selected common data elements pooled across three studies to better understand psychiatric comorbidity in neurological disease (Alzheimer\u27s disease/amnesic mild cognitive impairment, amyotrophic lateral sclerosis, cerebrovascular disease, frontotemporal dementia, and Parkinson\u27s disease)

    Towards Universal Structure-Based Prediction of Class II MHC Epitopes for Diverse Allotypes

    Get PDF
    The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632–0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I MHC based on quantitative prediction performance estimates for peptide binding to class II MHC in a fixed register

    Improved nucleotide selectivity and termination of 3′-OH unblocked reversible terminators by molecular tuning of 2-nitrobenzyl alkylated HOMedU triphosphates

    Get PDF
    We describe a novel 3′-OH unblocked reversible terminator with the potential to improve accuracy and read-lengths in next-generation sequencing (NGS) technologies. This terminator is based on 5-hydroxymethyl-2′-deoxyuridine triphosphate (HOMedUTP), a hypermodified nucleotide found naturally in the genomes of numerous bacteriophages and lower eukaryotes. A series of 5-(2-nitrobenzyloxy)methyl-dUTP analogs (dU.I–dU.V) were synthesized based on our previous work with photochemically cleavable terminators. These 2-nitrobenzyl alkylated HOMedUTP analogs were characterized with respect to incorporation, single-base termination, nucleotide selectivity and photochemical cleavage properties. Substitution at the α-methylene carbon of 2-nitrobenzyl with alkyl groups of increasing size was discovered as a key structural feature that provided for the molecular tuning of enzymatic properties such as single-base termination and improved nucleotide selectivity over that of natural nucleotides. 5-[(S)-α-tert-Butyl-2-nitrobenzyloxy]methyl-dUTP (dU.V) was identified as an efficient reversible terminator, whereby, sequencing feasibility was demonstrated in a cyclic reversible termination (CRT) experiment using a homopolymer repeat of ten complementary template bases without detectable UV damage during photochemical cleavage steps. These results validate our overall strategy of creating 3′-OH unblocked reversible terminator reagents that, upon photochemical cleavage, transform back into a natural state. Modified nucleotides based on 5-hydroxymethyl-pyrimidines and 7-deaza-7-hydroxymethyl-purines lay the foundation for development of a complete set of four reversible terminators for application in NGS technologies

    Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration.

    Get PDF
    Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles
    corecore