13 research outputs found

    Canadian Youth Criminality and Identity Formation: A South Asian (Sikh) Perspective

    Get PDF
    This thesis explores the experiences of second generation Sikh males in Canada, focusing on involvement in criminal activities during adolescence. Using a deeply qualitative autoethnographic approach (Anderson, 2006), I conducted unstructured active interviews (Holstein & Gubrium, 1995) with seven males ranging from 20 to 26 years of age. The interviews consist of a dialogue on how these youths\u27 emerging identities as Sikh and as Canadians contributed to their adolescent experiences with crime. Findings highlight the importance of engaging youth at the level of personal experience and at the level of institutional and community influences. Specifically, an interplay of parental, cultural, institutional, and societal processes impacted participants\u27 identities and subsequent actions, including desistance from crime as the youth emerged from adolescence. The major conclusion of the thesis is that while ethnic cultural influences and ethnic pride contributed to youths\u27 involvement in various criminal activities, ethnic and especially family influences and pride also contributed to transitions to desistance. This speaks to the need for an inclusive environment that encourages integration of immigrant populations in ways that allow them to actively participate as full citizens within their families, communities and as Canadians

    ASCORBIC ACID AS A GROWTH ADJUVANT IN ENCAPSULATED PROTOCORM-LIKE-BODIES OF RHYNCHOSTYLIS RETUSA BL. (ORCHIDACEAE)

    Get PDF
    In the present study, effect of ascorbic acid, a known growth adjuvant on encapsulated protocorm-like-bodies (PLBs) of Rhynchostylis retusa Bl. was investigated. PLBs were encapsulated in calcium alginate (3.5% sodium alginate and 100mM calcium chloride) prepared in Mitra et al. (1976) basal medium and supplemented with different concentration of ascorbic acid (5, 10, 15, 20mM). The encapsulated PLBs were stored at 25°C. Their germination response and germination potential was evaluated after every 4 weeks on basal media. Control set of encapsulated PLBs, failed to germinate after 32 weeks. However, PLBs with 15mM ascorbic acid in the encapsulated matrix showed the best response; nearly 90% germinated even after 32 weeks of storage. The survival and germination frequency was directly proportional to the level of ascorbic acid in the alginate mix upto 15mM level but declined on further increase. Differentiation of PLBs into plantlet was better in synthetic seeds containing lower concentration of ascorbic acid (5mM) as compared to higher levels (15, 20mM) whereas multiplication of secondary PLBs was more pronounced at higher levels. Chlorophyll content was inversely proportional to the level of ascorbic acid in the nutrient mix; lush green PLBs were observed at low concentration of ascorbic acid (5mM). This study highlights the potential of ascorbic acid as an aid to growth and survival of encapsulated PLBs upon storage

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    An okadaic acid-sensitive pathway involved in the phenobarbital-mediated induction of CYP2B gene expression in primary rat hepatocyte cultures

    No full text
    ABSTRACT We have previously demonstrated that specific activation of a cAMP-dependent protein kinase A (PKA) pathway resulted in complete repression of phenobarbital (PB)-inducible CYP gene expression in primary rat hepatocyte cultures. In the current investigation, we examined the role of protein phosphatase pathways as potential co-regulators of this repressive response. Primary rat hepatocytes were treated with increasing concentrations (0.1-25 nM) of okadaic acid, a potent inhibitor of serine/threonine-specific protein phosphatases PP1 and PP2A. PB induction responses were assessed by use of specific hybridization probes to CYP2B1 and CYP2B2 mRNAs. Okadaic acid completely inhibited the PB induction process in a concentration-dependent manner (IC 50 , ϳ1.5-2 nM). Similar repression was obtained with low concentrations of other highly specific phosphatase inhibitors, tautomycin and calyculin A. In contrast, exposure of hepatocytes to 1-nor-okadaone or okadaol, negative analogs of okadaic acid largely devoid of phosphatase inhibitory activity, was without effect on the PB induction process. At similar concentrations, okadaic acid produced only comparatively weak modulation of the ␤-naphthoflavone-inducible CYP1A1 gene expression pathway. In additional experiments, hepatocytes were treated with suboptimal concentrations of PKA activators together with phosphatase inhibitors. Okadaic acid markedly potentiated the repressive effects of dibutyryl-cAMP on the PB induction process. Together, these results indicate that both PKA and protein phosphatase (PP1 and/or PP2A) pathways exert potent and complementary control of the intracellular processes modulating the signaling of PB in cultured primary rat hepatocytes

    Cadmium Induced p53-Dependent Activation of Stress Signaling, Accumulation of Ubiquitinated Proteins, and Apoptosis in Mouse Embryonic Fibroblast Cells

    No full text
    The tumor suppressor oncoprotein, p53, is a critical regulator of stress-induced growth arrest and apoptosis. p53 activity is regulated through the ubiquitin proteasome system (UPS) with stress-induced disruption leading to increased accumulation of p53, resulting in growth arrest. In the present study, we investigate the role of p53 to determine sensitivity to cadmium (Cd) and whether induction of stress signaling responses and perturbation of the UPS are involved in Cd-induced cytotoxicity and apoptosis. We treated synchronously cultured p53 transgenic mouse embryonic fibroblasts, both wild-type p53+/+ and knockout p53−/− cells, with cadmium chloride (Cd, 0.5–20μM) for 24 h. Cd-induced cytotoxicity was assessed by cellular morphology disruption and neutral red dye uptake assay. Proteins in the stress signaling pathway, including p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK); ubiquitination, such as high-molecular weight of polyubiquitinated proteins (HMW-polyUb); and apoptotic pathways, were all measured. We found that Cd induced p53-dependent cytotoxicity in the p53+/+ cells, which exhibited a twofold greater sensitivity. We observed a dose-dependent stimulation of p38 MAPK and SAPK/JNK phosphorylation that corresponded to accumulation of HMW-polyUb conjugates and lead to the induction of apoptosis, as evidenced by the elevation of cleaved caspase-3. Our study suggests that Cd-mediated cytotoxicity and induction of stress signaling responses, elevated accumulation of HMW-polyUb conjugates, and resulting apoptosis are all dependent on p53 status
    corecore