386 research outputs found

    The spin-split incompressible edge states within empirical Hartree approximation at intermediately large Hall samples

    Full text link
    A self-consistent Thomas-Fermi-Poisson based calculation scheme is used to achieve spin resolved incompressible strips (ISs). The effect of exchange and correlation is incorporated by an empirically induced g factor. A local version of the Ohm's law describes the imposed fixed current, where the discrepancies of this model are resolved by a relevant spatial averaging process. The longitudinal resistance is obtained as a function of the perpendicular (strong) magnetic field at filling factor one and two plateaus. Interrelation between the ISs and the longitudinal zeros is explicitly shown.Comment: EP2DS-17 Proceedings, 6 Pages, 2 Figure

    Local current distribution at large quantum dots (QDs): a self-consistent screening model

    Get PDF
    We report the implementation of the self-consistent Thomas-Fermi screening theory, together with the local Ohm's law to a quantum dot system in order to obtain local current distribution within the dot and at the leads. We consider a large dot (size >700>700 nm) defined by split gates, and coupled to the leads. Numerical calculations show that the non-dissipative current is confined to the incompressible strips. Due to the non-linear screening properties of the 2DES at low temperatures, this distribution is highly sensitive to external magnetic field. Our findings support the phenomenological models provided by the experimental studies so far, where the formation of the (direct) edge channels dominate the transport.Comment: 6 Pages, 2 Figure

    Spatial Distribution of the Incompressible Strips at Aharonov-Bohm Interferometer

    Full text link
    In this work, the edge physics of an Aharonov-Bohm interferometer (ABI) defined on a two dimensional electron gas, subject to strong perpendicular magnetic field B, is investigated. We solve the three dimensional Poisson equation using numerical techniques starting from the crystal growth parameters and surface image of the sample. The potential profiles of etched and gate defined geometries are compared and it is found that the etching yields a steeper landscape. The spatial distribution of the incompressible strips is investigated as a function of the gate voltage and applied magnetic field, where the imposed current is confined to. AB interference is investigated due to scattering processes between two incompressible "edge-states".Comment: 5 pages, 3 figure

    Self-consistent calculation of the electron distribution near a Quantum-Point Contact in the integer Quantum Hall Effect

    Full text link
    In this work we implement the self-consistent Thomas-Fermi-Poisson approach to a homogeneous two dimensional electron system (2DES). We compute the electrostatic potential produced inside a semiconductor structure by a quantum-point-contact (QPC) placed at the surface of the semiconductor and biased with appropriate voltages. The model is based on a semi-analytical solution of the Laplace equation. Starting from the calculated confining potential, the self-consistent (screened) potential and the electron densities are calculated for finite temperature and magnetic field. We observe that there are mainly three characteristic rearrangements of the incompressible "edge" states, which will determine the current distribution near a QPC.Comment: 12 pages, 10 figures, submitted to Phys. Rev.

    Many-electron transport in Aharonov-Bohm interferometers: Time-dependent density-functional study

    Full text link
    We apply time-dependent density-functional theory to study many-electron transport in Aharonov-Bohm interferometers in a non-equilibrium situation. The conductance properties in the system are complex and depend on the enclosed magnetic flux in the interferometer, the number of interacting particles, and the mutual distance of the transport channels at the points of encounter. Generally, the electron-electron interactions do not suppress the visibility of Aharonov-Bohm oscillations if the interchannel distance -- determined by the positioning of the incompressible strips through the external magnetic field -- is optimized. However, the interactions also impose an interesting Aharonov-Bohm phase shift with channel distances below or above the optimal one. This effect is combined with suppressed oscillation amplitudes. We analyze these effects within different approximations for the exchange-correlation potential in time-dependent density-functional theory.Comment: to appear in Eur. J. Phys. B (2013

    Quantum Hall Resistance Overshoot in 2-Dimensional Electron Gases - Theory and Experiment

    Get PDF
    We present a systematical experimental investigation of an unusual transport phenomenon observed in two dimensional electron gases in Si/SiGe heterostructures under integer quantum Hall effect (IQHE) conditions. This phenomenon emerges under specific experimental conditions and in different material systems. It is commonly referred to as Hall resistance overshoot, however, lacks a consistent explanation so far. Based on our experimental findings we are able to develop a model that accounts for all of our observations in the framework of a screening theory for the IQHE. Within this model the origin of the overshoot is attributed to a transport regime where current is confined to co-existing evanescent incompressible strips of different filling factors.Comment: 26 pages, 10 figure

    Investigations on unconventional aspects in the quantum Hall regime of narrow gate defined channels

    Full text link
    We report on theoretical and experimental investigations of the integer quantized Hall effect in narrow channels at various mobilities. The Hall bars are defined electrostatically in two-dimensional electron systems by biasing metal gates on the surfaces of GaAs/AlGaAs heterostructures. In the low mobility regime the classical Hall resistance line is proportional to the magnetic field as measured in the high temperature limit and cuts through the center of each Hall plateau. For high mobility samples we observe in linear response measurements, that this symmetry is broken and the classical Hall line cuts the plateaus not at the center but at higher magnetic fields near the edges of the plateaus. These experimental results confirm the unconventional predictions of a model for the quantum Hall effect taking into account mutual screening of charge carriers within the Hall bar. The theory is based on solving the Poisson and Schr\"odinger equations in a self-consistent manner.Comment: EP2DS-17 Proceedings, 6 Pages, 2 Figure
    corecore