We report the implementation of the self-consistent Thomas-Fermi screening
theory, together with the local Ohm's law to a quantum dot system in order to
obtain local current distribution within the dot and at the leads. We consider
a large dot (size
>700 nm) defined by split gates, and coupled to the leads. Numerical
calculations show that the non-dissipative current is confined to the
incompressible strips. Due to the non-linear screening properties of the 2DES
at low temperatures, this distribution is highly sensitive to external magnetic
field. Our findings support the phenomenological models provided by the
experimental studies so far, where the formation of the (direct) edge channels
dominate the transport.Comment: 6 Pages, 2 Figure