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Abstract

We report the implementation of the self-consistent Thomas–Fermi screening theory, together with the local Ohm’s law to a quantum

dot system in order to obtain local current distribution within the dot and at the leads. We consider a large dot (size4700 nm) defined by

split gates, and coupled to the leads. Numerical calculations show that the non-dissipative current is confined to the incompressible strips.

Due to the non-linear screening properties of the 2DES at low temperatures, this distribution is highly sensitive to external magnetic field.

Our findings support the phenomenological models provided by the experimental studies so far, where the formation of the (direct) edge

channels dominate the transport.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For the last two decades, the electron transport through
quantum dots (QDs) has been a central question. A wide
range of different approaches, including independent
electron picture, constant interaction model and scattering
matrix theory, have provided mechanisms for explaining
the transport properties of QDs. The QDs are constructed
within a two-dimensional electron system (2DES), by
(split-) gates and/or chemical etching. In the presence of
a strong perpendicular magnetic field, it has been shown
that semi-metallic (compressible) and semi-insulating (in-
compressible) regions are formed due to Coulomb interac-
tion [1]. Despite some limited quantum mechanical
treatments, a microscopic model describing the current
distribution is still not available for large QDs (d4700 nm)
[2]. In this work we implement the self-consistent (SC)
Thomas–Fermi (TF) theory of screening [3–5] together
e front matter r 2007 Elsevier B.V. All rights reserved.
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with the local version of the Ohm’s law [4,5] to obtain the
local current distribution inside the QD and the leads. We
use a conductivity model [4,6] based on Gaussian
broadened density of states (following Ref. [7]). Our model
calculations show that the non-dissipative current is, in
fact, confined to the incompressible strips. Due to the non-
linear screening properties of the 2DES at low tempera-
tures, this distribution is highly sensitive to the external
magnetic field and our findings support the phenomen-
ological models provided by the experimental groups [2].
2. Model

Our calculation procedure starts with generating the
(external) potential V extðrÞ landscape from the metallic
surface gates, which are kept at the potential Vg, where
r ¼ ðx; yÞ. The calculation of V extðrÞ is based on the
solution of the 2D Laplace’s equation [6,8,9]. The screened
potential at zero field and zero temperature is obtained by

V scrðrÞ ¼ F�1½F ½V extðrÞ�=�ðqÞ�, (1)
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where F presents the Fourier transformation, �ðqÞ is the TF
dielectric function, �ðqÞ ¼ 1þ 2ðme2Þ=ðk̄_2jqjÞ, and k̄ is the
static dielectric constant (�12:4 for GaAs). Including a
magnetic (B) field perpendicular to the 2DES, one has to
solve the Poisson’s equation for the given initial potential
and electron distribution in a SC way, that is

nelðrÞ ¼

Z
dE DðEÞf ð½E þ V ðrÞ � m%ðrÞ�=kBTÞ (2)

and

V ðrÞ ¼ V extðrÞ þ
2e2

k̄

Z
A

dr0Kðr; r0Þ nelðr
0Þ. (3)

Here, f ðxÞ is the Fermi function, m%ðrÞ position dependent
chemical potential, T temperature, DðEÞ is the Gaussian
broadened Landau density of states (DOS), V ðrÞ the total
potential energy, Kðr; r0Þ is the Poisson kernel satisfying
periodic boundary conditions. For zero external current,
m%ðrÞ is a constant at the thermal equilibrium, otherwise
modified by the driving electric field as

EðrÞ ¼ rm%ðrÞ=e ¼ r̂ðrÞ:jðrÞ, (4)

for a given resistivity tensor r̂ðrÞ and current density jðrÞ.
We calculate the conductivity using the Gaussian broa-
dened DOS given by

DðEÞ ¼
1

2pl2

X1
n¼0

expð�½En � E�2=G2Þffiffiffi
p
p

G
, (5)

where G is the impurity parameter yielding the Landau
level (LL) broadening. The Landau energy is given by En ¼

_ocðnþ 1=2Þ ¼ EFOðnþ 1=2Þ where EF is the Fermi
energy. Beyond the linear response (i.e. when the current
is large enough to modify m%ðrÞ), one has to insert the
a

c

Fig. 1. (a) The split gate defined Qdot. Equipotential lines of the bare confinem

the opening and at the center of the dot (d).
modified chemical potential into Eq. (2) and repeat the SC
calculation until convergence is achieved.
3. Results and discussion

We define the QD by split gates (dark (blue) regions in
Fig. 1a) on the surface of the GaAs/AlGaAs heterostruc-
ture, 85 nm above the 2DES and considering a unit cell of
size 2100� 2100 nm2, with an average Fermi energy
12:75meV, corresponding a bulk electron density 3�
1011 cm�2 (indicated by the thick-dashed (red) contour
line). The metallic gates are biased (negatively) such that no
electrons can reside below. The QD has a rectangular shape
(�1200� 600 nm2), whereas the openings are approxi-
mately 300 nm. Furthermore, the QD is coupled electrically
to the leads, where the capacitive and tunneling effects are
negligible. In Fig. 1, we plot the bare confinement (b) and
screened (c) potentials obtained from Eq. (1). Following
the contour lines, one observes that V extðrÞ is smooth, i.e.
there are no potential variations within and near the QD,
whereas V scrðrÞ exhibits a local extremum, due to the strong
non-linear screening (for a recent review see Ref. [8]).
Two interesting potential cross-sections are highlighted in
Fig. 1d, indicated by horizontal lines (solid, depicting the
bare and dashed the screened potential at the opening and
center of the QD) shown in the contour plots. We observe
that, the screened potential is suppressed compared to the
bare potential at the leads of the QD, implying that more
states are allowed to pass through the barrier. More
interestingly, depending on the dot size, a local maximum
develops at the very center of the QD surrounded by a
minimum close to the edges where the high q components
dominate the screening. It is clear that, if the dot is smaller
b
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ent (b) and screened potential (c). Cross-section of the potential profiles at
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Fig. 2. (a–c) The gray scale plot of nðx; yÞ for three B values calculated at kT=_oc ¼
1
40
. (d) Density cross-section again at the center (plot) and at the

opening (inset).
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such potential inhomogeneities will disappear, similar to
what happens at the opening, however the dot will become
more confining compared to the non-interacting models.
We should also note that, if the 2DES is buried deeper, due
to exponential decay of the short range oscillations, such
local minima will not be seen even considering smaller dot
sizes. We continue our discussion of screening now also
considering an external B field. In Fig. 2, we show a
sequence of local filling factors while changing the B field.
At the highest B only the lowest LL is occupied therefore
the system is compressible almost everywhere except near
the gates, where local minimum is observed (see Fig. 2d). In
this situation, we see that the current is distributed all over
the sample, similar to a metal. From the edge state picture
point of view, a direct channel already exists and
conduction is quantized. Lowering the magnetic field
results in the formation of incompressible regions where
EF falls in between two LLs. We observe that, an
incompressible ring is formed within the dot which is
connected to the leads again by incompressible strips.
Since, the current flows within the incompressible edge
states, this is the most interesting case, due to the opening
of a direct channel, which is coupled to a compressible lake
inside the dot, separated by an incompressible region. At
the lowest B shown in figure, we see that the center of the
dot becomes compressible surrounded by incompressible
regions, due to the local minimum near the gates. The leads
remain compressible all over, therefore act as a metal and
current is directly proportional to the local electron
density. To conclude, we have provided an explicit
calculation of the spatial distribution of the incompressible
edge states considering a split gate defined (large) QD. We
have shown that depending on the sample geometry and B

field applied, a direct channel can emerge, connecting
the source to the drain. More interestingly, a dot-in-dot
structure is obtained for a certain range of parameters.
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