62 research outputs found

    Heterometallic lanthanide-centred [NiII6LnIII] rings

    Get PDF
    A [NiII6DyIII] heptanuclear complex featuring a rare six-membered {NiII6} metal ring surrounding the central Dy(III) ion is reported. Magnetic studies reveal single-molecule magnet behaviour for the complex under zero external dc field, while replacing the DyIII ion with ΄III or GdIII ions allows for a comprehensive understanding of the magnetic behaviour

    From Chalcogen Bonding to S–π Interactions in Hybrid Perovskite Photovoltaics

    Get PDF
    The stability of hybrid organic–inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low‐dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions. Here, the capacity to access novel LD perovskite structures that uniquely assemble through unorthodox S‐mediated interactions is explored by incorporating benzothiadiazole‐based moieties. The formation of S‐mediated LD structures is demonstrated, including one‐dimensional (1D) and layered two‐dimensional (2D) perovskite phases assembled via chalcogen bonding and S–π interactions, through a combination of techniques, such as single crystal and thin film X‐ray diffraction, as well as solid‐state NMR spectroscopy, complemented by molecular dynamics simulations, density functional theory calculations, and optoelectronic characterization, revealing superior conductivities of S‐mediated LD perovskites. The resulting materials are applied in n‐i‐p and p‐i‐n perovskite solar cells, demonstrating enhancements in performance and operational stability that reveal a versatile supramolecular strategy in photovoltaics

    From Chalcogen Bonding to S–π Interactions in Hybrid Perovskite Photovoltaics

    Get PDF
    The stability of hybrid organic–inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low‐dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions. Here, the capacity to access novel LD perovskite structures that uniquely assemble through unorthodox S‐mediated interactions is explored by incorporating benzothiadiazole‐based moieties. The formation of S‐mediated LD structures is demonstrated, including one‐dimensional (1D) and layered two‐dimensional (2D) perovskite phases assembled via chalcogen bonding and S–π interactions, through a combination of techniques, such as single crystal and thin film X‐ray diffraction, as well as solid‐state NMR spectroscopy, complemented by molecular dynamics simulations, density functional theory calculations, and optoelectronic characterization, revealing superior conductivities of S‐mediated LD perovskites. The resulting materials are applied in n‐i‐p and p‐i‐n perovskite solar cells, demonstrating enhancements in performance and operational stability that reveal a versatile supramolecular strategy in photovoltaics

    Soil microbial activity as influenced by compaction and straw mulching

    No full text
    Field study was performed on Haplic Luvisol soil to determine the effects of soil compaction and straw mulching on microbial parameters of soil under soybean. Treatments with different compaction were established on unmulched and mulched with straw soil. The effect of soil compaction and straw mulching on the total bacteria number and activities of dehydrogenases, protease, alkaline and acid phosphatases was studied. The results of study indicated the decrease of enzymes activities in strongly compacted soil and their increase in medium compacted soil as compared to no-compacted treatment. Mulch application caused stimulation of the bacteria total number and enzymatic activity in the soil under all compaction levels. Compaction and mulch effects were significant for all analyzed microbial parameters (P<0.001)
    • 

    corecore