277 research outputs found

    Voice and Speech therapy using VOCALAB - From research to practice

    Get PDF
    In order to help speech therapists in the evaluation and therapy of voice and speech of patients of all ages with communication difficulties, a software platform called VOCALAB has been developed, which has been gradually deployed in France and French-speaking countries. From the feedback and suggestions of speech therapists, the platform has been enhanced and extended in order to provide the optimum tools for efficient voice/speech evaluation and therapy

    Support à l’enseignement et la recherche en voix et parole pathologiques à l’aide des logiciels VOCALAB et DIADOLAB

    Get PDF
    International audienceDans cet article nous décrivons les aspects pédagogiques et recherche des projets VOCALAB et DIADOLAB. Nous rappelons les éléments de motivation au développement d’outils objectifs d’analyse de la voix et de la parole, principalement à destination des orthophonistes cliniciens mais aussi en formation initiale. Les démarches de recherche et les chantiers « collectifs » de base de données de voix et de parole sont explicités. Le support à l’encadrement de mémoires d’orthophonie a nécessité la construction d’outils statistiques spécifiques qui permettent d’obtenir des valeurs référentielles sur un grand nombre de cas de voix et de parole. Nous justifions aussi l’apport des logiciels d’évaluation objective pour la profession d’orthophoniste dans une démarche scientifique et probante

    Discriminating between viable and membrane-damaged cells of the plant pathogen Xylella fastidiosa.

    Get PDF
    Xylella fastidiosa is a plant pathogenic bacterium with devastating consequences to several crops of economic importance across the world. While this pathogen has been studied for over a century in the United States, several aspects of its biology remain to be investigated. Determining the physiological state of bacteria is essential to understand the effects of its interactions with different biotic and abiotic factors on cell viability. Although X. fastidiosa is culturable, its slow growing nature makes this technique cumbersome to assess the physiological state of cells present in a given environment. PMA-qPCR, i.e. the use of quantitative PCR combined with the pre-treatment of cells with the dye propidium monoazide, has been successfully used in a number of studies on human pathogens to calculate the proportion of viable cells, but has less frequently been tested on plant pathogens. We found that the use of a version of PMA, PMAxx, facilitated distinguishing between viable and non-viable cells based on cell membrane integrity in vitro and in planta. Additional experiments comparing the number of culturable, viable, and total cells in planta would help further confirm our initial results. Enhancers, intended to improve the efficacy of PMAxx, were not effective and appeared to be slightly toxic to X. fastidiosa

    Bleeding management in remote environment: the use of fresh whole blood transfusion and lyophilised plasma

    Get PDF
    To mitigate medical risks in remote environments, the authors have implemented an innovative integrated medical support solution for bleeding management on board ships since 2013. Fresh whole blood transfusion (FWBT) and lyophilised plasma were put in place to address life threatening haemorrhages in maritime operations in the Arctic and Antarctica. The authors are illustrating the bleeding risks with an actual case occurring in Antarctica prior to the implementation of these procedures. They are presenting the different steps involved in the complex process of FWBT, from blood donors’ qualifications to actual transfusions. The pros and cons of blood transfusion in extreme remote environment are discussed, including the training of health care professionals, equipment requirements, legal and ethical issues, decision making in complex blood group matching, medical benefits and risks.

    Neutral Products Desorption from DNA Thin Films Induced by Low-Energy Electrons (0.5-20 eV)

    No full text
    International audienceLow-energy electrons (LEEs) are produced in great amount in the biological medium, when submitted to high-energy radiations. They have the ability to induce strand breaks in the DNA duplex, as proven by electrophoresis analysis of irradiated dry deposits. LEE interactions with target molecules induce the formation of different species such as anions, cations, radicals and neutrals. The desorption of anionic species from oligonucleotides and DNA under LEEs irradiation has been intensively explored. The involved mechanisms and sites were successfully identified, including the resonant formation of transient negative ions (TNI) below 15 eV. However, the desorption of neutral products was less explored [4], due to their difficult detection. Exploring this aspect will provide additional information and complete the picture of the dissociating pathways followed by TNIs

    Urban Egyptian Women Aged 19-30 Years Display Nutrition Transition-Like Dietary Patterns, with High Energy and Sodium Intakes, and Insufficient Iron, Vitamin D, and Folate Intakes.

    Get PDF
    BACKGROUND: Recent changes in Egyptian dietary habits can be attributed to more urban and sedentary lifestyles and to alterations in the dietary and economic context. The mean BMI of Egyptian women is one of the highest worldwide, and 50% have iron deficiency. OBJECTIVE: The aim was to quantify food and nutrient intakes of urban Egyptian women and conduct a detailed analysis of micronutrients commonly consumed in inadequate amounts, such as iron, vitamin D, and folate. METHODS: Urban Egyptian women aged 19-30 y (n = 130) were recruited during 2016-2017. Energy needs were estimated using the Henry equation, assuming a low physical activity level (1.4). Dietary intakes and iron bioavailability were estimated from a 4-d food diary. Macronutrient intakes were compared with WHO/FAO population goals and micronutrient intakes with Egyptian recommendations. Iron needs were determined for each subject. RESULTS: The mean BMI (kg/m2) was 27.9 ± 4.9. The mean total energy intake (TEI; 2389 ± 715 kcal/d) was significantly higher than needs (2135 ± 237 kcal/d; P = 0.00018). Total fat (33%TEI) and SFA (11%TEI) intakes were slightly higher than population goals (15-30%TEI and <10%TEI, respectively). Diets provided 18 ± 8 g/d of fiber, 98 ± 54 g/d of total sugars, and nearly twice the recommended sodium intake (intake: 2787 ± 1065 mg/d; recommendation: <1500 mg/d). Estimated dietary iron bioavailability was low (9.2% ± 1.6%), and 79% of women consumed less iron than the average requirement (17.5 ± 7 mg/d). Overall, 82% and 80% of women consumed less vitamin D and folate, respectively, than recommended. CONCLUSIONS: Egyptian women aged 19-30 y have high intakes of energy and sodium, whereas iron, vitamin D, and folate intakes are insufficient, with only low concentrations of bioavailable iron. These results call for further investigation into measures that would improve this population's diet quality.Publication from previous employment rol

    Comparative Pro-cognitive and Neurochemical Profiles of Glycine Modulatory Site Agonists and Glycine Reuptake Inhibitors in the Rat: Potential Relevance to Cognitive Dysfunction and Its Management

    Get PDF
    © 2020, The Author(s). Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40–200mg/kg) and ORG24598 (0.63–5mg/kg), the agonists, glycine (40–800mg/kg), and D-serine (10–160mg/kg) and the partial agonists, S18841 (2.5mg/kg s.c.) and D-cycloserine (2.5–40mg/kg) that all dose-dependently prevented scopolamine disruption of social recognition in adult rats. Over similar dose ranges, they also prevented a delay-induced impairment of novel object recognition (NOR). Glycine reuptake inhibitors specifically elevated glycine but not D-serine levels in rat prefrontal cortical (PFC) microdialysates, while glycine and D-serine markedly increased levels of glycine and D-serine, respectively. D-Cycloserine slightly elevated D-serine levels. Conversely, S18841 exerted no influence on glycine, D-serine, other amino acids, monamines, or acetylcholine. Reversal of NOR deficits by systemic S18841 was prevented by the NMDA receptor antagonist, CPP (20mg/kg), and the glycine modulatory site antagonist, L701,324 (10mg/kg). S18841 blocked deficits in NOR following microinjection into the PFC (2.5–10μg/side) but not the striatum. Finally, in rats socially isolated from weaning (a neurodevelopmental model of schizophrenia), S18841 (2.5 and 10mg/kgs.c.) reversed impairment of NOR and contextual fear-motivated learning without altering isolation-induced hyperactivity. In conclusion, despite contrasting neurochemical profiles, partial glycine site agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects in rats of potential relevance to treatment of schizophrenia and other brain disorders where cognitive performance is impaired

    Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats.

    Get PDF
    International audienceA large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat OM and assessed the impact of this metabolism on peripheral olfactory responses. Rat OM was found to efficiently metabolize quinoline, coumarin and isoamyl acetate. Quinoline and coumarin are metabolized by CYPs whereas isoamyl acetate is hydrolyzed by carboxylesterases. Electro-olfactogram (EOG) recordings revealed that the hydroxylated metabolites derived from these odorants elicited lower olfactory response amplitudes than the parent molecules. We also observed that glucurono-conjugated derivatives induced no olfactory signal. Furthermore, we demonstrated that the local application of a CYP inhibitor on rat olfactory epithelium increased EOG responses elicited by quinoline and coumarin. Similarly, the application of a carboxylesterase inhibitor increased the EOG response elicited by isoamyl acetate. This increase in EOG amplitude provoked by XME inhibitors is likely due to enhanced olfactory sensory neuron activation in response to odorant accumulation. Taken together, these findings strongly suggest that biotransformation of odorant molecules by enzymes localized to the olfactory mucosa may change the odorant's stimulating properties and may facilitate the clearance of odorants to avoid receptor saturation
    • …
    corecore