8 research outputs found

    A 24 Month Open Label Study of Canakinumab in Neonatal-Onset Multisystem Inflammatory Disease

    No full text
    Objective: To study efficacy and safety of escalating doses of canakinumab, a fully human anti-IL-1β monoclonal antibody in the severe cryopyrin associated periodic syndrome, neonatal-onset multisystem inflammatory disease (NOMID). Methods: 6 patients were enrolled in this 24-month, open label phase I/II study. All underwent anakinra withdrawal. The initial subcutaneous canakinumab dose was 150mg (or 2mg/kg in patients ≤40kg) or 300mg (or 4mg/kg) with escalation up to 600mg (or 8mg/kg) every 4 weeks. Full remission was remission of patient-reported clinical components and measures of systemic inflammation and CNS inflammation. Hearing, vision and safety were assessed. Primary endpoint was full remission at Month 6 Results: All patients flared after anakinra withdrawal, and symptoms and serum inflammatory markers improved with canakinumab. All patients required dose escalation to the maximum dose. At Month 6, none had full remission, although 4/6 achieved inflammatory remission, based on disease activity diary scores and normal C-reactive proteins. None had CNS remission; 5/6 due to persistent CNS leucocytosis. At the last study visit, 5/6 patients achieved inflammatory remission and 4/6 had continued CNS leucocytosis. Visual acuity and field were stable in all patients, progressive hearing loss occurred in 1/10 ears. Adverse events (AEs) were rare. One serious AE (abscess due to a methicillin-resistant Staph. aureus infection) occurred. Conclusion: Canakinumab at the studied doses improves symptoms and serum inflammatory features of NOMID, although, low grade CNS leukocytosis in four patients and headaches in one additional patient persisted. Whether further dose intensifications are beneficial in these cases remains to be assessed

    Parallel Gene Expression Changes in Sarcoidosis Involving the Lacrimal Gland, Orbital Tissue, or Blood

    No full text
    Sarcoidosis is a major cause of ocular or periocular inflammation. The pathogenesis of sarcoidosis is incompletely understood and diagnosis often requires a biopsy. To determine how gene expression in either orbital adipose tissue or the lacrimal gland affected by sarcoidosis compares with gene expression in other causes of orbital disease and how gene expression in tissue affected by sarcoidosis compares with gene expression in peripheral blood samples obtained from patients with sarcoidosis. In a multicenter, international, observational study, gene expression profiling of formalin-fixed biopsy specimens, using GeneChipp U133 Plus 2 microarrays (Affymetrix), was conducted between October 2012 and January 2014 on tissues biopsied from January 2000 through June 2013. Participants included 12 patients with orbital sarcoidosis (7 in adipose tissue; 5 affecting the lacrimal gland) as well as comparable tissue from 6 healthy individuals serving as controls or patients with thyroid eye disease, nonspecific orbital inflammation, or granulomatosis with polyangiitis. In addition, results were compared with gene expression in peripheral blood samples obtained from 12 historical individuals with sarcoidosis. Significantly differentially expressed transcripts defined as a minimum of a 1.5-fold increase or a comparable decrease and a false discovery rate of P < .05. Signals from 2449 probe sets (transcripts from approximately 1522 genes) were significantly increased in the orbital adipose tissue from patients with sarcoidosis. Signals from 4050 probe sets (approximately 2619 genes) were significantly decreased. Signals from 3069 probe sets (approximately 2001 genes) were significantly higher and 3320 (approximately 2283 genes) were significantly lower in the lacrimal gland for patients with sarcoidosis. Ninety-two probe sets (approximately 69 genes) had significantly elevated signals and 67 probe sets (approximately 56 genes) had significantly lower signals in both orbital tissues and in peripheral blood from patients with sarcoidosis. The transcription factors, interferon-response factor 1, interferon-response factor 2, and nuclear factor κB, were strongly implicated in the expression of messenger RNA upregulated in common in the 3 tissues. Gene expression in sarcoidosis involving the orbit or lacrimal gland can be distinguished from gene expression patterns in control tissue and overlaps with many transcripts upregulated or downregulated in the peripheral blood of patients with sarcoidosis. These observations suggest that common pathogenic mechanisms contribute to sarcoidosis in different sites. The observations support the hypothesis that a pattern of gene expression profiles could provide diagnostic information in patients with sarcoidosis

    Orbital pseudotumor can be a localized form of granulomatosis with polyangiitis as revealed by gene expression profiling

    No full text
    Biopsies and ANCA testing for limited forms of granulomatosis with polyangiitis (GPA) are frequently non-diagnostic. We characterized gene expression in GPA and other causes of orbital inflammation. We tested the hypothesis that a sub-set of patients with non-specific orbital inflammation (NSOI, also known as pseudotumor) mimics a limited form of GPA. Formalin-fixed, paraffin-embedded orbital biopsies were obtained from controls (n=20) and patients with GPA (n=6), NSOI (n=25), sarcoidosis (n=7), or thyroid eye disease (TED) (n=20) and were divided into discovery and validation sets. Transcripts in the tissues were quantified using Affymetrix U133 Plus 2.0 microarrays. Distinct gene expression profiles for controls and subjects with GPA, TED, or sarcoidosis were evident by principal coordinate analyses. Compared with healthy controls, 285 probe sets had elevated signals in subjects with GPA and 1472 were decreased (>1.5-fold difference, false discovery rate adjusted p<0.05). The immunoglobulin family of genes had the most dramatic increase in expression. Although gene expression in GPA could be readily distinguished from gene expression in TED, sarcoidosis, or controls, a comparison of gene expression in GPA versus NSOI found no statistically significant differences. Thus, forms of orbital inflammation can be distinguished based on gene expression. NSOI/pseudotumor is heterogeneous but often may be an unrecognized, localized form of GPA. •Some types of orbital inflammation are distinguishable by gene expression profiles.•Non-specific orbital inflammation can be subdivided by analysis of gene expression.•Some NSOI gene expression profiles are indistinguishable from those of GPA.•Limited GPA in the orbit requires gene expression profiling to be identified

    Gene Expression Profiling and Heterogeneity of Nonspecific Orbital Inflammation Affecting the Lacrimal Gland

    No full text
    Although a variety of well-characterized diseases, such as sarcoidosis and granulomatosis with polyangiitis, affect the lacrimal gland, many patients with dacryoadenitis are diagnosed as having nonspecific orbital inflammation (NSOI) on the basis of histology and systemic disease evaluation. The ability to further classify the disease in these patients should facilitate selection of effective therapies. To test the a priori hypothesis that gene expression profiles would complement clinical and histopathologic evaluations in identifying well-characterized diseases and in subdividing NSOI into clinically relevant groups. In this cohort study, gene expression levels in biopsy specimens of inflamed and control lacrimal glands were measured with microarrays. Stained sections of the same biopsy specimens were used for evaluation of histopathology. Tissue samples of patients were obtained from oculoplastic surgeons at 7 international centers representing 4 countries (United States, Saudi Arabia, Canada, and Taiwan). Gene expression analysis was done at Oregon Health & Science University. Participants were 48 patients, including 3 with granulomatosis with polyangiitis, 28 with NSOI, 7 with sarcoidosis, 4 with thyroid eye disease, and 6 healthy controls. The study dates were March 2012 to April 2017. The primary outcome was subdivision of biopsy specimens based on gene expression of a published list of approximately 40 differentially expressed transcripts in blood, lacrimal gland, and orbital adipose tissue from patients with sarcoidosis. Stained sections were evaluated for inflammation (none, mild, moderate, or marked), granulomas, nodules, or fibrosis by 2 independent ocular pathologists masked to the clinical diagnosis. Among 48 patients (mean [SD] age, 41.6 [19.0] years; 32 [67%] female), the mclust algorithm segregated the biopsy specimens into 4 subsets, with the differences illustrated by a heat map and multidimensional scaling plots. Most of the sarcoidosis biopsy specimens were in subset 1, which had the highest granuloma score. Three NSOI biopsy specimens in subset 1 had no apparent granulomas. Thirty-two percent (9 of 28) of the NSOI biopsy specimens could not be distinguished from biopsy specimens of healthy controls in subset 4, while other examples of NSOI tended to group with gene expression resembling granulomatosis with polyangiitis or thyroid eye disease. The 4 subsets could also be partially differentiated by their fibrosis, granulomas, and inflammation pathology scores but not their lymphoid nodule scores. Gene expression profiling discloses clear heterogeneity among patients with lacrimal inflammatory disease. Comparison of the expression profiles suggests that a subset of patients with nonspecific dacryoadenitis might have a limited form of sarcoidosis, while other patients with NSOI cannot be distinguished from healthy controls

    Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases.

    No full text
    Item does not contain fulltextInterleukin-1 (IL-1) is a highly active pro-inflammatory cytokine that lowers pain thresholds and damages tissues. Monotherapy blocking IL-1 activity in autoinflammatory syndromes results in a rapid and sustained reduction in disease severity, including reversal of inflammation-mediated loss of sight, hearing and organ function. This approach can therefore be effective in treating common conditions such as post-infarction heart failure, and trials targeting a broad spectrum of new indications are underway. So far, three IL-1-targeted agents have been approved: the IL-1 receptor antagonist anakinra, the soluble decoy receptor rilonacept and the neutralizing monoclonal anti-IL-1beta antibody canakinumab. In addition, a monoclonal antibody directed against the IL-1 receptor and a neutralizing anti-IL-1alpha antibody are in clinical trials
    corecore