1,662 research outputs found

    DEVELOPMENT OF STANDARDIZED LUNAR REGOLITH SIMULANT MATERIALS

    Get PDF
    Lunar exploration activities require scientific and engineering studies that use standardized testing procedures and ultimately support flight certification of hardware and the development of technologies for their use on the lunar surface. It is necessary to anticipate the full range of source materials and environmental constraints that are expected on the Moon and Mars, and to evaluate in-situ resource utilization (ISRU) coupled with testing and development. Historical use of lunar simulants has focused on physical aspects of the lunar regolith for landing and transportation activities. Lunar mare simulants MLS-1 and JSC-1 have been developed, but supplies have been exhausted. Renewed emphasis on exploration and ISRU activities requires development of standardized simulant reference materials that are traceable interlaboratory standards for testing and simulate the lunar regolith in terms of physical, chemical, and mineralogical properties. This new generation of lunar regolith simulants must therefore support both technological development and testing methods. These issues were extensively discussed at the 2005 Lunar Regolith Simulant Materials Workshop

    Two mini-band model for self-sustained oscillations of the current through resonant tunneling semiconductor superlattices

    Full text link
    A two miniband model for electron transport in semiconductor superlattices that includes scattering and interminiband tunnelling is proposed. The model is formulated in terms of Wigner functions in a basis spanned by Pauli matrices, includes electron-electron scattering in the Hartree approximation and modified Bhatnagar-Gross-Krook collision tems. For strong applied fields, balance equations for the electric field and the miniband populations are derived using a Chapman-Enskog perturbation technique. These equations are then solved numerically for a dc voltage biased superlattice. Results include self-sustained current oscillations due to repeated nucleation of electric field pulses at the injecting contact region and their motion towards the collector. Numerical reconstruction of the Wigner functions shows that the miniband with higher energy is empty during most of the oscillation period: it becomes populated only when the local electric field (corresponding to the passing pulse) is sufficiently large to trigger resonant tunneling.Comment: 26 pages, 3 figures, to appear in Phys. Rev.

    Radiation hardness of CMS pixel barrel modules

    Get PDF
    Pixel detectors are used in the innermost part of the multi purpose experiments at LHC and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of all detector components has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade, the fluence will be much higher and it is not yet clear how long the present pixel modules will stay operative in such a harsh environment. The aim of this study was to establish such a limit as a benchmark for other possible detector concepts considered for the upgrade. As the sensors and the readout chip are the parts most sensitive to radiation damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to 6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq. After irradiation the response of the system to beta particles from a Sr-90 source was measured to characterise the charge collection efficiency of the sensor. Radiation induced changes in the readout chip were also measured. The results show that the present pixel modules can be expected to be still operational after a fluence of 2.8E15 Neq. Samples irradiated up to 5E15 Neq still see the beta particles. However, further tests are needed to confirm whether a stable operation with high particle detection efficiency is possible after such a high fluence.Comment: Contribution to the 11th European Symposium on Semiconductor Detectors June 7-11, 2009 Wildbad Kreuth, German

    Characterization of Standardized Lunar Regolith Simulant Materials

    Get PDF
    Lunar exploration requires scientific and engineering studies using standardized testing procedures that ultimately support flight certification of technologies and hardware. This motivates the development of traceable, standardized lunar regolith simulant (SLRS) materials. For details, refer to the 2005 Workshop on Lunar Regolith Simulant Materials

    A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies

    Get PDF
    Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases. In support of the superior discriminative power of this novel approach, we observed no significant enrichment for GWAS-related genes in coexpression modules extracted from single studies or in meta-modules using gene expression data from non-psychiatric control subjects. Genes in the identified module encode proteins implicated in neuronal signaling and structure, including glutamate metabotropic receptors (GRM1, GRM7), GABA receptors (GABRA2, GABRA4), and neurotrophic and development-related proteins [BDNF, reelin (RELN), Ephrin receptors (EPHA3, EPHA5)]. These results are consistent with the current understanding of molecular mechanisms of MDD and provide a set of putative interacting molecular partners, potentially reflecting components of a functional module across cells and biological pathways that are synchronously recruited in MDD, other brain disorders and MDD-related illnesses. Collectively, this study demonstrates the importance of integrating transcriptome data, gene coexpression modules and GWAS results for providing novel and complementary approaches to investigate the molecular pathology of MDD and other complex brain disorders. © 2014 Chang et al

    A Parametric Sizing Model for Molten Regolith Electrolysis Reactors to Produce Oxygen from Lunar Regolith

    Get PDF
    We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility

    ISOCAM observations of the L1551 star formation region

    Get PDF
    The results of a deep mid-IR ISOCAM survey of the L1551 dark molecular cloud are presented. The aim of this survey is a search for new YSO (Young Stellar Object) candidates, using two broad-band filters centred at 6.7 and 14.3 micron. Although two regions close to the centre of L1551 had to be avoided due to saturation problems, 96 sources were detected in total (76 sources at 6.7 micron and 44 sources at 14.3 micron). Using the 24 sources detected in both filters, 14 were found to have intrinsic mid-IR excess at 14.3 micron and were therefore classified as YSO candidates. Using additional observations in B, V, I, J, H and K obtained from the ground, most candidates detected at these wavelengths were confirmed to have mid-IR excess at 6.7 micron as well, and three additional YSO candidates were found. Prior to this survey only three YSOs were known in the observed region (avoiding L1551 IRS5/NE and HL/XZ Tau). This survey reveals 15 new YSO candidates, although several of these are uncertain due to their extended nature either in the mid-IR or in the optical/near-IR observations. Two of the sources with mid-IR excess are previously known YSOs, one is a brown dwarf MHO 5 and the other is the well known T Tauri star HH30, consisting of an outflow and an optically thick disk seen edge on.Comment: 14 Pages, 8 Figure

    Crystal structure and phonon softening in Ca3Ir4Sn13

    Full text link
    We investigated the crystal structure and lattice excitations of the ternary intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering techniques. For T > T* ~ 38 K the x-ray diffraction data can be satisfactorily refined using the space group Pm-3n. Below T* the crystal structure is modulated with a propagation vector of q = (1/2, 1/2, 0). This may arise from a merohedral twinning in which three tetragonal domains overlap to mimic a higher symmetry, or from a doubling of the cubic unit cell. Neutron diffraction and neutron spectroscopy results show that the structural transition at T* is of a second-order, and that it is well described by mean-field theory. Inelastic neutron scattering data point towards a displacive structural transition at T* arising from the softening of a low-energy phonon mode with an energy gap of Delta(120 K) = 1.05 meV. Using density functional theory the soft phonon mode is identified as a 'breathing' mode of the Sn12 icosahedra and is consistent with the thermal ellipsoids of the Sn2 atoms found by single crystal diffraction data

    Intersubband gain in a Bloch oscillator and Quantum cascade laser

    Full text link
    The link between the inversion gain of quantum cascade structures and the Bloch gain in periodic superlattices is presented. The proposed theoretical model based on the density matrix formalism is able to treat the gain mechanism of the Bloch oscillator and Quantum cascade laser on the same footing by taking into account in-plane momentum relaxation. The model predicts a dispersive contribution in addition to the (usual) population-inversion-dependent intersubband gain in quantum cascade structures and - in the absence of inversion - provides the quantum mechanical description for the dispersive gain in superlattices. It corroborates the predictions of the semi-classical miniband picture, according to which gain is predicted for photon energies lower than the Bloch oscillation frequency, whereas net absorption is expected at higher photon energies, as a description which is valid in the high-temperature limit. A red-shift of the amplified emission with respect to the resonant transition energy results from the dispersive gain contribution in any intersubband transition, for which the population inversion is small.Comment: 10 pages, 6 figure
    corecore