3 research outputs found

    The evidence base for circulating tumour DNA blood-based biomarkers for the early detection of cancer: a systematic mapping review

    Get PDF
    Background: The presence of circulating cell-free DNA from tumours in blood (ctDNA) is of major importance to those interested in early cancer detection, as well as to those wishing to monitor tumour progression or diagnose the presence of activating mutations to guide treatment. In 2014, the UK Early Cancer Detection Consortium undertook a systematic mapping review of the literature to identify blood-based biomarkers with potential for the development of a non-invasive blood test for cancer screening, and which identified this as a major area of interest. This review builds on the mapping review to expand the ctDNA dataset to examine the best options for the detection of multiple cancer types. Methods: The original mapping review was based on comprehensive searches of the electronic databases Medline, Embase, CINAHL, the Cochrane library, and Biosis to obtain relevant literature on blood-based biomarkers for cancer detection in humans (PROSPERO no. CRD42014010827). The abstracts for each paper were reviewed to determine whether validation data were reported, and then examined in full. Publications concentrating on monitoring of disease burden or mutations were excluded. Results: The search identified 94 ctDNA studies meeting the criteria for review. All but 5 studies examined one cancer type, with breast, colorectal and lung cancers representing 60% of studies. The size and design of the studies varied widely. Controls were included in 77% of publications. The largest study included 640 patients, but the median study size was 65 cases and 35 controls, and the bulk of studies (71%) included less than 100 patients. Studies either estimated cfDNA levels non-specifically or tested for cancer-specific mutations or methylation changes (the majority using PCR-based methods). Conclusion: We have systematically reviewed ctDNA blood biomarkers for the early detection of cancer. Pre-analytical, analytical, and post-analytical considerations were identified which need to be addressed before such biomarkers enter clinical practice. The value of small studies with no comparison between methods, or even the inclusion of controls is highly questionable, and larger validation studies will be required before such methods can be considered for early cancer detection

    Association between self-reported signs and symptoms and SARS-CoV-2 antibody detection in UK key workers.

    Get PDF
    BACKGROUND: Screening for SARS-CoV-2 antibodies is under way in some key worker groups; how this adds to self-reported COVID-19 illness is unclear. In this study, we investigate the association between self-reported belief of COVID-19 illness and seropositivity. METHODS: Cross-sectional study of three key worker streams comprising (A) Police and Fire & Rescue (2 sites) (B) healthcare workers (1 site) and (C) healthcare workers with previously positive PCR result (5 sites). We collected self-reported signs and symptoms of COVID-19 and compared this with serology results from two SARS-CoV-2 immunoassays (Roche Elecsys® and EUROIMMUN). RESULTS: Between 01 and 26 June, we recruited 2847 individuals (Stream A: 1,247, Stream B: 1,546 and Stream C: 154). Amongst those without previous positive PCR tests, 687/2,579 (26%) reported belief they had COVID-19, having experienced compatible symptoms; however, only 208 (30.3%) of these were seropositive on both immunoassays. Both immunoassays had high sensitivities relative to previous PCR positivity (>93%); there was also limited decline in antibody titres up to 110 days post symptom onset. Symptomatic but seronegative individuals had differing symptom profiles and shorter illnesses than seropositive individuals. CONCLUSION: Non-COVID-19 respiratory illness may have been mistaken for COVID-19 during the outbreak; laboratory testing is more specific than self-reported key worker beliefs in ascertaining past COVID-19 disease
    corecore