116 research outputs found

    Zigzag-shaped nickel nanowires via organometallic template-free route

    Get PDF
    In this manuscript, the formation of nickel nanowires (average size: several tens to hundreds of μm long and 1.0-1.5 μm wide) at low temperature is found to be driven by dewetting of liquid organometallic precursors during spin coating process and by self-assembly of Ni clusters. Elaboration of metallic thin films by low temperature deposition technique makes the preparation process compatible with most of the substrates. The use of iron and cobalt precursor shows that the process could be extended to other metallic systems. In this work, AFM and SEM are used to follow the assembly of Ni clusters into straight or zigzag lines. The formation of zigzag structure is specific to the Ni precursor at appropriate preparation parameters. This template free process allows a control of anisotropic structures with homogeneous sizes and angles on standard Si/SiO2 surface

    Directed deposition of nickel nanoparticles using self-assembled organic template

    Get PDF
    Self-assembled organic monolayers are useful templates for nanofabrication. Ordered layer of long alkyl-chain molecules can direct the wet chemical deposition of metallic coatings on different substrates. Ordered structures of fatty acids and their motions on the phenyloctane/HOPG interface are observed by scanning tunneling microscopy (STM). Modification of self-assembled fatty acid patterns due to hydroxamic acid presence is also in the focus of the research. Fatty acid layer formation, the structure of the formed thin film on solid/liquid interface, and simultaneous nickel colloidal deposition have been investigated

    Cu2+-induced self-assembly and amyloid formation of a cyclic d,l-α-peptide: Structure and function

    Get PDF
    In a wide spectrum of neurodegenerative diseases, self-assembly of pathogenic proteins to cytotoxic intermediates is accelerated by the presence of metal ions such as Cu2+. Only low concentrations of these early transient oligomeric intermediates are present in a mixture of species during fibril formation, and hence information on the extent of structuring of these oligomers is still largely unknown. Here, we investigate dimers as the first intermediates in the Cu2+-driven aggregation of a cyclic D,L-alpha-peptide architecture. The unique structural and functional properties of this model system recapitulate the self-assembling properties of amyloidogenic proteins including beta-sheet conformation and cross-interaction with pathogenic amyloids. We show that a histidine-rich cyclic D,L-alpha-octapeptide binds Cu2+ with high affinity and selectivity to generate amyloid-like cross-beta-sheet structures. By taking advantage of backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic amounts of Cu2+ promote aggregation of the peptide to fibrillar structures, higher concentrations dose-dependently reduce fibrillization and lead to formation of spherical particles, showing self-assembly to different polymorphs. For the initial self-assembly step to the dimers, we found that Cu2+ is coordinated on average by two histidines, similar to self-assembled peptides, indicating that a similar binding interface is perpetuated during Cu2+-driven oligomerization. The dimer itself is found in heterogeneous conformations that undergo dynamic exchange, leading to the formation of different polymorphs at the initial stage of the aggregation process

    Degradation Effects at the Porous Transport Layer/Catalyst Layer Interface in Polymer Electrolyte Membrane Water Electrolyzer

    Get PDF
    The porous transport layer (PTL)/catalyst layer (CL) interface plays a crucial role in the achievement of high performance and efficiency in polymer electrolyte membrane water electrolyzers (PEMWEs). This study investigated the effects of the PTL/CL interface on the degradation of membrane electrode assemblies (MEAs) during a 4000 h test, comparing the MEAs assembled with uncoated and Ir-coated Ti PTLs. Our results show that compared to an uncoated PTL/CL interface, an optimized interface formed when using a platinum group metal (PGM) coating, i.e., an iridium layer at the PTL/CL interface, and reduced the degradation of the MEA. The agglomeration and formation of voids and cracks could be found for both MEAs after the long-term test, but the incorporation of an Ir coating on the PTL did not affect the morphology change or oxidation of IrOx in the catalyst layer. In addition, our studies suggest that the ionomer loss and restructuring of the anodic MEA can also be reduced by Ir coating of the PTL/CL interface. Optimization of the PTL/CL interface improves the performance and durability of a PEMWE

    Panel 7: otitis media:treatment and complications

    Get PDF
    Objective: We aimed to summarize key articles published between 2011 and 2015 on the treatment of (recurrent) acute otitis media, otitis media with effusion, tympanostomy tube otorrhea, chronic suppurative otitis media and complications of otitis media, and their implications for clinical practice. Data Sources: PubMed, Ovid Medline, the Cochrane Library, and Clinical Evidence (BMJ Publishing). Review Methods: All types of articles related to otitis media treatment and complications between June 2011 and March 2015 were identified. A total of 1122 potential related articles were reviewed by the panel members; 118 relevant articles were ultimately included in this summary. Conclusions: Recent literature and guidelines emphasize accurate diagnosis of acute otitis media and optimal management of ear pain. Watchful waiting is optional in mild to moderate acute otitis media; antibiotics do shorten symptoms and duration of middle ear effusion. The additive benefit of adenoidectomy to tympanostomy tubes in recurrent acute otitis media and otitis media with effusion is controversial and age dependent. Topical antibiotic is the treatment of choice in acute tube otorrhea. Symptomatic hearing loss due to persistent otitis media with effusion is best treated with tympanostomy tubes. Novel molecular and biomaterial treatments as adjuvants to surgical closure of eardrum perforations seem promising. There is insufficient evidence to support the use of complementary and alternative treatments. Implications for Practice: Emphasis on accurate diagnosis of otitis media, in its various forms, is important to reduce overdiagnosis, overtreatment, and antibiotic resistance. Children at risk for otitis media and its complications deserve special attention

    Bone-remodeling mechanism regulating by osteoprotegerin

    Get PDF
    オステオプロテゲリン(OPG)は、骨(オステオ)を護る(プロテクトする)という意味から命名されたサイトカインである。OPGは、破骨細胞分化因子であるRANKL分子のデコイ受容体として破骨細胞の分化と骨吸収機能を抑制する。骨組織においては、骨芽細胞および骨細胞がOPGの産生細胞であるが、近年、骨のリモデリングを制御する因子としてOPGが生体内において重要な役割を果たすことを示す実験結果が蓄積されてきた

    Iridium nanoparticles for the oxygen evolution reaction: Correlation of structure and activity of benchmark catalyst systems

    No full text
    The rotating disk electrode (RDE) is a well-known and established electrochemical tool for evaluating typical powdery electrocatalyst platforms such as platinum supported on carbon black. Unfortunately, the same cannot be said of the iridium-based catalysts typically used in polymer electrolyte membrane (PEM) water electrolyzers. The challenge essentially relies on three aspects: a) high anodic overpotentials which fatally destroy any electrode substrate; b) low loading RDE-inks for catalyst screenings may show strong sedimentation c) iridium does not show defined peaks during cyclic voltammetry. With this work, a newly developed method is presented which allows the characterization of the electrocatalytic properties of iridium based electrocatalysts in a true RDE configuration. Here we aimed to access the electrochemistry of various commercial iridium-based catalysts with different structures. We show that the stability of glassy carbon RDE and of carbon black, added to the ink in order to stabilize the dispersion is sufficient during the electrochemical testing protocol used. Reproducibility of activity results obtained on various samples is increased by stabilizing the dispersions with carbon black, resulting in reproducible and homogeneous catalyst thin films
    corecore