17 research outputs found

    Modelling generalized parton distributions to describe deeply virtual Compton scattering data

    Full text link
    We present a new model for generalized parton distributions (GPDs), based on the aligned jet model, which successfully describes the deeply virtual Compton scattering (DVCS) data from H1, ZEUS, HERMES and CLAS. We also present an easily implementable and flexible algorithm for their construction. This new model is necessary since the most widely used models for GPDs, which are based on factorized double distributions, cannot, in their current form, describe the DVCS data when employed in a full QCD analysis. We demonstrate explicitly the reason for the shortcoming in the data description. We also highlight several non-perturbative input parameters which could be used to tune the GPDs, and the tt-dependence, to the DVCS data using a fitting procedure.Comment: 12 pages, 12 figures, revtex4, shortened version accepted for publication in PRD, figures improved and references adde

    A detailed QCD analysis of twist-3 effects in DVCS observables

    Full text link
    In this paper I present a detailed QCD analysis of twist-3 effects in the Wandzura-Wilczek (WW) approximation in deeply virtual Compton scattering (DVCS) observables for various kinematical settings, representing the HERA, HERMES, CLAS and the planned EIC (electron-ion-collider) experiments. I find that the twist-3 effects in the WW approximation are almost always negligible at collider energies but can be large for low Q^2 and smaller x_bj in observables for the lower energy, fixed target experiments directly sensitive to the real part of DVCS amplitudes like the charge asymmetry (CA). Conclusions are then drawn about the reliability of extracting twist-2 generalized parton distributions (GPDs) from experimental data and a first, phenomenological, parameterization of the LO and NLO twist-2 GPD HH, describing all the currently available DVCS data within the experimental errors is given.Comment: 18 pages, 21 figures, uses Revtex4, final version to be published in PRD, minor revisions due to referee suggestion

    Generalised parton distributions at small x

    Full text link
    We justify the practical use of the Shuvaev integral transform approach to calculate the skewed distributions, needed to describe diffractive processes, directly from the conventional diagonal global parton distributions. We address doubts which have been raised about this procedure. We emphasise that the approach, on the one hand, satisfies all theoretical reqirements, and, on the other hand, is consistent with DVCS data at NLO. We construct an easily accessible package for the computation of these skewed distributions.Comment: 21 pages, 10 figures. New title. Extra Fig. 2 and extra Section 5 to compare with alternative treatment of GPDs. Numerical results unchanged. To be published in EPJ

    The dual parametrization for gluon GPDs

    Full text link
    We consider the application of the dual parametrization for the case of gluon GPDs in the nucleon. This provides opportunities for the more flexible modeling unpolarized gluon GPDs in a nucleon which in particular contain the invaluable information on the fraction of nucleon spin carried by gluons. We perform the generalization of Abel transform tomography approach for the case of gluons. We also discuss the skewness effect in the framework of the dual parametrization. We strongly suggest to employ the fitting strategies based on the dual parametrization to extract the information on GPDs from the experimental data.Comment: 37 pages, 2 figure

    Sum rules and dualities for generalized parton distributions: is there a holographic principle?

    Full text link
    To leading order approximation, the physical content of generalized parton distributions (GPDs) that is accessible in deep virtual electroproduction of photons or mesons is contained in their value on the cross-over trajectory. This trajectory separates the t-channel and s-channel dominated GPD regions. The underlying Lorentz covariance implies correspondence between these two regions through their relation to GPDs on the cross-over trajectory. This point of view leads to a family of GPD sum rules which are a quark analogue of finite energy sum rules and it guides us to a new phenomenological GPD concept. As an example, we discuss the constraints from the JLab/Hall A data on the dominant u-quark GPD H. The question arises whether GPDs are governed by some kind of holographic principle.Comment: 45 pages, 4 figures, Sect. 2 reorganized for clarity. Typos in Eq. (20) corrected. 4 new refs. Matches published versio

    Helicity skewed quark distributions of the nucleon and chiral symmetry

    Get PDF
    We compute the helicity skewed quark distributions H~\widetilde{H} and E~\widetilde{E} in the chiral quark-soliton model of the nucleon. This model emphasizes correctly the role of spontaneously broken chiral symmetry in structure of nucleon. It is based on the large-N_c picture of the nucleon as a soliton of the effective chiral lagrangian and allows to calculate the leading twist quark- and antiquark distributions at a low normalization point. We discuss the role of chiral symmetry in the helicity skewed quark distributions H~\widetilde{H} and E~\widetilde{E}. We show that generalization of soft pion theorems, based on chiral Ward identities, leads in the region of -\xi < x < \xi to the pion pole contribution to E~\widetilde{E} which dominates at small momentum transfer.Comment: 22 pages, 5 figure

    Dilatation operator in (super-)Yang-Mills theories on the light-cone

    Full text link
    The gauge/string correspondence hints that the dilatation operator in gauge theories with the superconformal SU(2,2|N) symmetry should possess universal integrability properties for different N. We provide further support for this conjecture by computing a one-loop dilatation operator in all (super)symmetric Yang-Mills theories on the light-cone ranging from gluodynamics all the way to the maximally supersymmetric N=4 theory. We demonstrate that the dilatation operator takes a remarkably simple form when realized in the space spanned by single-trace products of superfields separated by light-like distances. The latter operators serve as generating functions for Wilson operators of the maximal Lorentz spin and the scale dependence of the two are in the one-to-one correspondence with each other. In the maximally supersymmetric, N=4 theory all nonlocal light-cone operators are built from a single CPT self-conjugated superfield while for N=0,1,2 one has to deal with two distinct superfields and distinguish three different types of such operators. We find that for the light-cone operators built from only one species of superfields, the one-loop dilatation operator takes the same, universal form in all SYM theories and it can be mapped in the multi-color limit into a Hamiltonian of the SL(2|N) Heisenberg (super)spin chain of length equal to the number of superfields involved. For "mixed'' light-cone operators involving both superfields the dilatation operator for N<=2 receives an additional contribution from the exchange interaction between superfields on the light-cone which breaks its integrability symmetry and creates a mass gap in the spectrum of anomalous dimensions.Comment: 70 pages, 3 figures; minor changes, references adde

    Exact resolution of the Baxter equation for reggeized gluon interactions

    Get PDF
    The interaction of reggeized gluons in multi-colour QCD is considered in the Baxter-Sklyanin representation, where the wave function is expressed as a product of Baxter functions Q(lambda) and a pseudo-vacuum state. We find n solutions of the Baxter equation for a composite state of n gluons with poles of rank r in the upper lambda semi-plane and of rank n-1-r in the lower lambda semi-plane (0 leq r leq n-1). These solutions are related by n-2 linear equations with coefficients depending on coth (pi lambda). The poles cancel in the wave function, bilinear combination of holomorphic and anti-holomorphic Baxter functions, guaranteeing its normalizability. The quantization of the intercepts of the corresponding Regge singularities appears as a result of the physical requirements that the holomorphic energies for all solutions of the Baxter equation are the same and the total energies, calculated around two singularities lambda, lambda^* --> + i or -i, coincide. It results in simple properties of the zeroes of the Baxter functions. For illustration we calculate the parameters of the reggeon states constructed from three and four gluons. For the Odderon the ground state has conformal spin |m -m | = 1 and its intercept equals unity. The ground state of four reggeized gluons possesses conformal spin 2 and its intercept turns out to be higher than that for the BFKL Pomeron. We calculate the anomalous dimensions of the corresponding operators for arbitrary alpha_s/omega.Comment: LaTex, 42 pages, 8 .ps figures. Expanded and improved versio

    Theory of deeply virtual Compton scattering on the nucleon

    Get PDF
    We compute the cross section for leptoproduction of the real photon off the nucleon, which is sensitive to the deeply virtual Compton scattering amplitude with power accuracy. Our considerations go beyond the leading twist and involve the complete analysis in the twist-three approximation. We discuss consequences of the target and lepton beam polarizations for accessing the generalized parton distributions from experimental measurements of the azimuthal angular dependence of the final state photon or nucleon. We introduce several sets of asymmetries, defined as Fourier moments with respect to the azimuthal angle, which allow for a clear separation of the twist-two and -three sectors. Relying on a simple ansatz for the generalized parton distributions, we give quantitative estimates for azimuthal and spin asymmetries, discuss the uncertainties of these predictions brought in by radiative corrections, and compare them with experimental data as well as other theoretical expectations. Furthermore, we derive a general parametrization of the DVCS amplitudes in the region of small Bjorken variable.Comment: 76 pages, LaTeX, 16 figures, 3 tables, minor correction

    Central exclusive production of dijets at hadronic colliders

    Full text link
    In view of the recent diffractive dijet data from CDF run II, we critically re-evaluate the standard approach to the calculation of central production of dijets in quasi-elastic hadronic collisions. We find that the process is dominated by the non-perturbative region, and that even perturbative ingredients, such as the Sudakov form factor, are not under theoretical control. Comparison with data allows us to fix some of the uncertainties. Although we focus on dijets, our arguments apply to other high-mass central systems, such as the Higgs boson.Comment: 37 pages, 18 figures. Two new appendices, and a discussion of the upper scale of the Sudakov form factor are introduced. The text about the calculation of the uncertainties has been rewritte
    corecore