641 research outputs found

    Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 1

    Get PDF
    The application of tantalum capacitors in the Viking Lander includes both dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function for extended periods of ripple current, and the existence of any memory characteristics are presented

    Backgrounds of squeezed relic photons and their spatial correlations

    Get PDF
    We discuss the production of multi-photons squeezed states induced by the time variation of the (Abelian) gauge coupling constant in a string cosmological context. Within a fully quantum mechanical approach we solve the time evolution of the mean number of produced photons in terms of the squeezing parameters and in terms of the gauge coupling. We compute the first (amplitude interference) and second order (intensity interference) correlation functions of the magnetic part of the photon background. The photons produced thanks to the variation of the dilaton coupling are strongly bunched for the realistic case where the growth of the dilaton coupling is required to explain the presence of large scale magnetic fields and, possibly of a Faraday rotation of the Cosmic Microwave Background.Comment: 9 pages in LaTex styl

    Random and Correlated Phases of Primordial Gravitaional Waves

    Full text link
    The phases of primordial gravity waves is analysed in detail within a quantum mechanical context following the formalism developed by Grishchuk and Sidorov. It is found that for physically relevant wavelengths both the phase of each individual mode and the phase {\it difference} between modes are randomly distributed. The phase {\it sum} between modes with oppositely directed wave-vectors, however, is not random and takes on a definite value with no rms fluctuation. The conventional point of view that primordial gravity waves appear after inflation as a classical, random stochastic background is also addressed.Comment: 14 pages, written in REVTE

    A descriptive pilot study of structural and functional social network ties among women in the women’s health initiative (WHI) study

    Get PDF
    Few studies examine the network structure and function of older women’s health discussion networks. We sought to assess the feasibility and acceptability of collecting social network data via telephone from 72 women from the Women’s Health Initiative study and to describe structural and functional characteristics. Women were socially connected and had dense networks. Women were emotionally close to network members, but their networks were not used to facilitate communication with health-care providers. One-third of network members was not influential on health-related decision-making. Collecting social network data via telephone is feasible and an acceptable, though un-preferred, mode of data collection

    Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Get PDF
    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions

    Highly sensitive multipoint real-time kinetic detection of Surface Plasmon bioanalytes with custom CMOS cameras

    Get PDF
    Phase sensitive Surface Plasmon Resonance (SPR) techniques are a popular means of characterizing biomolecular interactions. However, limitations due to the narrow dynamic range and difficulty in adapting the method for multi-point sensing have restricted its range of applications. This paper presents a compact phase sensitive SPR technology using a custom CMOS camera. The system is exceptionally versatile enabling one to trade dynamic range for sensitivity without altering the optical system. We present results showing sensitivity over the array of better than 10−6 Refractive Index Units (RIU) over a refractive index range of 2×10−2 RIU, with peak sensitivity of 3×10−7 RIU at the center of this range. We also explain how simply altering the settings of polarization components can give sensitivity on the order of 10−8 RIU albeit at the cost of lower dynamic range. The consistent response of the custom CMOS camera in the system also allowed us to demonstrate precise quantitative detection of two Fibrinogen antibody–protein binding sites. Moreover, we use the system to determine reaction kinetics and argue how the multipoint detection gives useful insight into the molecular binding mechanisms
    corecore