17 research outputs found

    An m-Polar Fuzzy PROMETHEE Approach for AHP-Assisted Group Decision-Making

    No full text
    The Analytical Hierarchy Process (AHP) is arguably the most popular and factual approach for computing the weights of attributes in the multi-attribute decision-making environment. The Preference Ranking Organization Method for Enrichment of Evaluations (PROMETHEE) is an outranking family of multi-criteria decision-making techniques for evaluating a finite set of alternatives, that relies on multiple and inconsistent criteria. One of its main advantages is the variety of admissible preference functions that can measure the differences between alternatives, in response to the type and nature of the criteria. This research article studies a version of the PROMETHEE technique that encompasses multipolar assessments of the performance of each alternative (relative to the relevant criteria). As is standard practice, first we resort to the AHP technique in order to quantify the normalized weights of the attributes by the pairwise comparison of criteria. Afterwards the m-polar fuzzy PROMETHEE approach is used to rank the alternatives on the basis of conflicting criteria. Six types of generalized criteria preference functions are used to measure the differences or deviations of every pair of alternatives. A partial ranking of alternatives arises by computing the positive and negative outranking flows of alternatives, which is known as PROMETHEE I. Furthermore, a complete ranking of alternatives is achieved by the inspection of the net flow of alternatives, and this is known as PROMETHEE II. Two comparative analysis are performed. A first study checks the impact of different types of preference functions. It considers the usual criterion preference function for all criteria. In addition, we compare the technique that we develop with existing multi-attribute decision-making methods

    Multi-Criteria Group Decision-Making for Selection of Green Suppliers under Bipolar Fuzzy PROMETHEE Process

    No full text
    The preference ranking organization method for enrichment of evaluations (PROMETHEE) method considers a significant outranking class of multi-criteria decision analysis (MCDA), as it is easy to deal with its simple computations. In the PROMETHEE, different preference functions are used according to the type and nature of attributes or criteria that demonstrate the clearness and reliability of this method. This study provides a new version of the PROMETHEE method using bipolar fuzzy information, named the bipolar fuzzy PROMETHEE method. Bipolar fuzzy sets or numbers constitute an asymmetrical relationship between two judgmental factors of human reasoning. Vague and imprecise knowledge is characterized by bipolar fuzzy linguistic terms which are further represented in the form of trapezoidal bipolar fuzzy numbers. The trapezoidal bipolar fuzzy numbers are used by analysts to assign the preferences of alternatives on the basis of criteria. Further, a ranking function of bipolar fuzzy numbers is considered to access the crisp real preferences of alternatives. The entropy weighting information is employed to calculate the weights of attributes by considering the condition of normality. A numerical example such as the selection of green suppliers by using the bipolar fuzzy PROMETHEE is performed on the basis of the usual criterion preference function in order to explain the procedure of the proposed method. Comparable results are derived by using the combination of linear and level preference functions. The results obtained by using different types of preference functions are the same, representing the authenticity of the proposed bipolar fuzzy PROMETHEE method

    Multiple-Attribute Decision Making ELECTRE II Method under Bipolar Fuzzy Model

    No full text
    The core aim of this paper is to provide a new multiple-criteria decision making (MCDM) model, namely bipolar fuzzy ELimination and Choice Translating REality (ELECTRE) II method, by combining the bipolar fuzzy set with ELECTRE II technique. It can be used to solve the problems having bipolar uncertainty. The proposed method is established by defining the concept of bipolar fuzzy strong, median and weak concordance as well as discordance sets and indifferent set to define two types of outranking relations, namely strong outranking relation and weak outranking relation. The normalized weights of criteria, which may be partly or completely unknown for decision makers, are calculated by using an optimization technique, which is based on maximizing deviation method. A systematic iterative procedure is applied to strongly outrank as well as weakly outrank graphs to determine the ranking of favorable actions or alternatives or to choose the best possible solution. The implementation of the proposed method is presented by numerical examples such as selection of business location and to chose the best supplier. A comparative analysis of proposed ELECTRE II method is also presented with already existing multiple-attribute decision making methods, including Technique for the Order of Preference by Similarity to an Ideal Solution (TOPSIS) and ELECTRE I under bipolar fuzzy environment by solving the problem of business location

    Group Decision-Making Based on the VIKOR Method with Trapezoidal Bipolar Fuzzy Information

    No full text
    The VIKOR methodology stands out as an important multi-criteria decision-making technique. VIKOR stands for “VIekriterijumsko KOmpromisno Rangiranje”, a Serbian term for “multi-criteria optimization and compromise solution”. It has been adapted to sources of information with sundry formats. We contribute to that strand on literature with a design of a new multiple-attribute group decision-making method called the trapezoidal bipolar fuzzy VIKOR method. It consists of a suitable redesign of the VIKOR approach so that it can use information with bipolar configurations. Bipolar fuzzy sets (and numbers) establish a symmetrical trade-off between two judgmental constituents of human thinking. The agents acquire uncertain and vague information in the form of linguistic variables parameterized by trapezoidal bipolar fuzzy numbers. Trapezoidal bipolar fuzzy numbers are considered by decision-makers for assigning the preference information of alternatives with respect to different attributes. Our non-trivial adaptation necessitates several steps. The ranking function of bipolar fuzzy numbers is employed to make a simple decision matrix with real numbers as its entries. Shannon’s entropy concept is applied to evaluate the normalized weights for attributes that may be either partially or completely unknown to the decision-makers. The ordering of the alternatives is obtained by assorting the maximum group utility and the individual regret of the opponent in an ascending manner. For illustration, the proposed technique is applied to two group decision-making problems, namely, the selection of waste treatment methods and the site to plant a thermal power station. A comparison of this method with the trapezoidal bipolar fuzzy TOPSIS method is also presented
    corecore