7,377 research outputs found

    Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system

    Get PDF
    We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke Objective: We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke. Methods: We performed a prospective longitudinal analysis of the sensitivity of DTI markers of optic tract health in 12 patients with postsynaptic visual pathway stroke, 12 stroke controls, and 28 healthy controls. We examined group differences in (1) optic tract fractional anisotropy (FA-asymmetry), (2) perimetric measures of visual impairment, and (3) the relationship between FA-asymmetry and perimetric assessment. Results: FA-asymmetry was higher in patients with visual pathway lesions than in control groups. These differences were evident 3 months from the time of injury and did not change significantly at 12 months. Perimetric measures showed evidence of impairment in participants with visual pathway stroke but not in control groups. A significant association was observed between FA-asymmetry and perimetric measures at 3 months, which persisted at 12 months. Conclusions: DTI markers of RTD are apparent 3 months from the time of injury. This represents the earliest noninvasive evidence of RTD in any species. Furthermore, these measures associate with measures of visual impairment. DTI measures offer a reproducible, noninvasive, and sensitive method of investigating RTD and its role in visual impairment

    Behavioural clusters and predictors of performance during recovery from stroke

    Get PDF
    We examined the patterns and variability of recovery post-stroke in multiple behavioral domains. A large cohort of first time stroke patients with heterogeneous lesions was studied prospectively and longitudinally at 1-2 weeks, 3 months and one year post-injury with structural MRI to measure lesion anatomy and in-depth neuropsychological assessment. Impairment was described at all timepoints by a few clusters of correlated deficits. The time course and magnitude of recovery was similar across domains, with change scores largely proportional to the initial deficit and most recovery occurring within the first three months. Damage to specific white matter tracts produced poorer recovery over several domains: attention and superior longitudinal fasciculus II/III, language and posterior arcuate fasciculus, motor and corticospinal tract. Finally, after accounting for the severity of the initial deficit, language and visual memory recovery/outcome was worse with lower education, while the occurrence of multiple deficits negatively impacted attention recovery

    Electrometry Using Coherent Exchange Oscillations in a Singlet-Triplet-Qubit

    Get PDF
    Two level systems that can be reliably controlled and measured hold promise in both metrology and as qubits for quantum information science (QIS). When prepared in a superposition of two states and allowed to evolve freely, the state of the system precesses with a frequency proportional to the splitting between the states. In QIS,this precession forms the basis for universal control of the qubit,and in metrology the frequency of the precession provides a sensitive measurement of the splitting. However, on a timescale of the coherence time, T2T_2, the qubit loses its quantum information due to interactions with its noisy environment, causing qubit oscillations to decay and setting a limit on the fidelity of quantum control and the precision of qubit-based measurements. Understanding how the qubit couples to its environment and the dynamics of the noise in the environment are therefore key to effective QIS experiments and metrology. Here we show measurements of the level splitting and dephasing due to voltage noise of a GaAs singlet-triplet qubit during exchange oscillations. Using free evolution and Hahn echo experiments we probe the low frequency and high frequency environmental fluctuations, respectively. The measured fluctuations at high frequencies are small, allowing the qubit to be used as a charge sensor with a sensitivity of 2×108e/Hz2 \times 10^{-8} e/\sqrt{\mathrm{Hz}}, two orders of magnitude better than the quantum limit for an RF single electron transistor (RF-SET). We find that the dephasing is due to non-Markovian voltage fluctuations in both regimes and exhibits an unexpected temperature dependence. Based on these measurements we provide recommendations for improving T2T_2 in future experiments, allowing for higher fidelity operations and improved charge sensitivity

    Candida albicans biofilm heterogeneity does not influence denture stomatitis but strongly influences denture cleansing capacity

    Get PDF
    Approximately 20  % of the UK population wear some form of denture prosthesis, resulting in denture stomatitis in half of these individuals. Candida albicans is primarily attributed as the causative agent, due to its biofilm -forming ability. Recently, there has been increasing evidence of C. albicans biofilm heterogeneity and the negative impact it can have clinically; however, this phenomenon has yet to be studied in relation to denture isolates. The aims of this study were to evaluate C. albicans biofilm formation of clinical denture isolates in a denture environment and to assess antimicrobial activity of common denture cleansers against these tenacious communities. C. albicans isolated from dentures of healthy and diseased individuals was quantified using real-time PCR and biofilm biomass assessed using crystal violet. Biofilm development on the denture substratum poly(methyl methacrylate), Molloplast B and Ufi-gel was determined. Biofilm formation was assessed using metabolic and biomass stains, following treatment with denture hygiene products. Although C. albicans was detected in greater quantities in diseased individuals, it was not associated with increased biofilm biomass. Denture substrata were shown to influence biofilm biomass, with poly(methyl methacrylate) providing the most suitable environment for C. albicans to reside. Of all denture hygiene products tested, Milton had the most effective antimicrobial activity, reducing biofilm biomass and viability the greatest. Overall, our results highlight the complex nature of denture- related disease, and disease development cannot always be attributed to a sole cause. It is the distinct combination of various factors that ultimately determines the pathogenic outcome

    Agreement between prospective diary data and retrospective questionnaire report of abdominal pain and stooling symptoms in children with irritable bowel syndrome

    Get PDF
    BACKGROUND: In functional gastrointestinal disorders, patient recall of symptoms drives diagnostic decisions and evaluation of treatment response, and research conclusions about potential treatments. In pediatrics, parent report also impacts assessment and care. Hence, identifying methods for accurately capturing patient and parent report of irritable bowel syndrome (IBS) symptoms is important. This study evaluated correspondence between retrospective questionnaire (parent and child report) and prospective diary data for children and adolescents with IBS. METHODS: Participants included 50 children/adolescents with IBS per Rome III criteria. Children completed a 2-week pain and stool diary. Children and parents subsequently completed a 2-week recall questionnaire, reporting number of pain days, maximum pain, days without bowel movement, and days with diarrhea during the diary interval. Intraclass correlation coefficients and Bland-Altman plots assessed agreement. KEY RESULTS: For pain and days without bowel movement, overall agreement between child recall questionnaire and child diary was strong, although under conditions likely to facilitate agreement and with individual variation observed. Parent recall and child diary were less concordant, and agreement about diarrhea was poor for parent and child. Age did not significantly correlate with agreement. CONCLUSIONS & INFERENCES: Child questionnaire with short recall interval may be a reasonable approximation for diary data, although this varies by individual and replication/investigation of lengthier recall are needed. Relying on parent questionnaire does not appear a suitable proxy, and recall of stool form by both parent and child appears more problematic. These results combined with existing literature support use of diary data whenever possible

    Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits

    Get PDF
    Quantum computers have the potential to solve certain interesting problems significantly faster than classical computers. To exploit the power of a quantum computation it is necessary to perform inter-qubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor due to their potential for scalability and miniaturization. However, their weak interactions with the environment, which leads to their long coherence times, makes inter-qubit operations challenging. We perform a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography we measure the full density matrix of the system and determine the concurrence and the fidelity of the generated state, providing proof of entanglement

    High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant

    Get PDF
    Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC

    Hyperpolarized Long-T1 Silicon Nanoparticles for Magnetic Resonance Imaging

    Get PDF
    Silicon nanoparticles are experimentally investigated as a potential hyperpolarized, targetable MRI imaging agent. Nuclear T_1 times at room temperature for a variety of Si nanoparticles are found to be remarkably long (10^2 to 10^4 s) - roughly consistent with predictions of a core-shell diffusion model - allowing them to be transported, administered and imaged on practical time scales without significant loss of polarization. We also report surface functionalization of Si nanoparticles, comparable to approaches used in other biologically targeted nanoparticle systems.Comment: supporting material here: http://marcuslab.harvard.edu/Aptekar_hyper1_sup.pd
    corecore